{VERSION 2 3 "APPLE_PPC_MAC" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 86 "1. Evaluate the following , if they exist. If they are divergent, state clearly why. " }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "limit((2*x^2+x-3)/(x^2+3*x-4 ), x=infinity);" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "lim it((2*x^2+x-3)/(x^2+3*x-4), x=1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# \"\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "(By l'Hopital's rule)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "limit((2*x^2+x-3)/(x^2+3* x-4), x=-4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%*undefinedG" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 130 "L'Hopital's rule is NOT valid her e, because the numerator does not tend to 0. It is undefined because \+ the denominator tends to 0." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "sum(2^k * 3^(-k+1), k = 2..infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 47 "2. Deter mine whether the following converge. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "int(((2+x)/(2*x))^(1/3), x=0..2);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#-%$intG6$,$*&\"\"##F(\"\"$*&,&F(\"\"\"%\"xGF-F-F.!\" \"#F-F*#F-F(/F.;\"\"!F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "e valf(\");" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+d6J]E!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 104 "Well, that's finite. But why? Because \+ the integrand is less than (2/x)^(1/3), which can be integrated:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "int((2/x)^(1/3),x=0..2);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 22 "Convergent, all right." }}{PARA 0 "" 0 "" {TEXT -1 0 "" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "sum(1/(k*(ln(k)^3)),k=2..i nfinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%$sumG6$*&%\"kG!\"\"-%#l nG6#F'!\"$/F';\"\"#%)infinityG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 87 "Maple is telling us she doesn't know the exact answer. Let's compare with an integral:" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "int(1/(k*(ln(k)^3)),k=2..infinity);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,$*$-%#lnG6#\"\"#!\"##\"\"\"F(" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 33 "Well, that's finite. Convergent. " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 246 "Problems 3 and 4 are concern ed with estimating the integral of 3/(1+4x^2). No credit will be giv en for an accurate estimate of this integral, only for the approximati on,.\n\n\n3. (10 points) In this problem we use Taylor's polynomial \+ and series." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "taylor(3/(1+ 4*x^2),x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"xG\"\"$\"\"!!#7\" \"#\"#[\"\"%-%\"OG6#\"\"\"\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "int(3-12*x^2+48*x^4,x=0..1/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"#8\"#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 90 "For what posit ive values of x is the Taylor series convergent for int(3/(1+4 t^2),t= 0..x);" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 95 "Answer: SAME AS FOR 3/(1+4 x^2), except possibly for the ends of the interval. Since this is " }}{PARA 0 "" 0 "" {TEXT -1 93 "the sum of \+ a geometric series in powers ((x/2)^2)^n, we have convergence for -2 \+ < x < 2. We" }}{PARA 0 "" 0 "" {TEXT -1 98 "actually do a little bett er, for it converges when x=2,-2 by the alternating series test. Answ er:" }}{PARA 0 "" 0 "" {TEXT -1 11 "-2 ² x ² 2." }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 22 "f := x -> 3/(1+4*x^2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG:6#%\"xG6\"6$%)operatorG%&arrowGF(,$*$,&\"\"\"F/* $9$\"\"#\"\"%!\"\"\"\"$F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "evalf(student[trapezoid](f(x),x=0..1/2,4));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+x6>u6!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "evalf(student[simpson](f(x),x=0..1/2,2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"++++v6!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 13 "J ust for fun:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "int(f(x),x= 0..1/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$%#PiG#\"\"$\"\")" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalf(\");" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#$\"+Xs4y6!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "10 0 0" 53 }{VIEWOPTS 1 1 0 1 1 1803 }