Here are some problems from Prof. Harrell's tests given last year, for practice for this week. Because of differences in the calendar, PRoblems 3-4 are from the first test from last year, and problem 1 from the second.

In problems 1 and 2 we shall amuse ourselves with three vectors,

 $\mathbf{u} = (2,2,2)$ $\mathbf{v} = (1,0,-1)$ $\mathbf{w} = (1,5,1)$

1. (10 points) Calculate the lengths of these vectors and the cosines of the angles between them. consider all possibilities.

ANSWERS:

COSINES OF ANGLES: Fill in the table with the cosines of the angles of the vectors of the given column and row.

,	u	V	W
u			
v			
W			

KEY FORMULA OR METHOD (optional for partial credit)_____

(Problem 2 deleted)

Problems 3 and 4 are concerned with estimating the integral $\frac{3}{1+4x^2}$. No credit will be given for an accurate estimate of this integral, only for the approximation.

- 3. (10 points) In this problem we use Taylor's polynomial and series.
- a) Find the Taylor polynomial in powers of x up to and including x^4 for $\frac{3}{1+4x^2}$. $p_4(x) = \underline{\qquad} + \underline{\qquad} x + \underline{\qquad} x^2 + \underline{\qquad} x^3 + \underline{\qquad} x^4$
- b) Evaluate the integral $\int_{0}^{1/2} p_4(x) dx$. $\int_{0}^{1/2} p_4(x) dx =$ _____

c) For what positive values of x is the Taylor series convergent for $\int_{0}^{x} \frac{3}{1+4t^2} dt$?

ANSWER: It converges for exactly the following values of x:______.

KEY FORMULA OR METHOD (optional for partial credit)_____

4. (10 points)

a) Evaluate the integral $\int_{0}^{1/2} \frac{3}{1+4x^2} dx$ with the trapezoid rule, n=4:

$$\int_{0}^{1/2} \frac{3}{1+4 \ x^2} \ dx \doteq$$

b) Evaluate the integral $\int_{0}^{1/2} \frac{3}{1+4x^2} dx$ with Simpson's rule, n=2:

$$\int_{0}^{1/2} \frac{3}{1+4 x^{2}} dx =$$

KEY FORMULA OR METHOD (optional for partial credit)