{VERSION 3 0 "APPLE_PPC_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 56 "Maple's solutions to the t hird test (left arrow version)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 86 "1. (10 points) Consider the triangle wi th vertices\n\n\011(1,1,1), (1,-2,3), and (1,0,0)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg);" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "W arning, new definition for trace" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#7^ r%.BlockDiagonalG%,GramSchmidtG%,JordanBlockG%)LUdecompG%)QRdecompG%*W ronskianG%'addcolG%'addrowG%$adjG%(adjointG%&angleG%(augmentG%(backsub G%%bandG%&basisG%'bezoutG%,blockmatrixG%(charmatG%)charpolyG%)cholesky G%$colG%'coldimG%)colspaceG%(colspanG%*companionG%'concatG%%condG%)cop yintoG%*crossprodG%%curlG%)definiteG%(delcolsG%(delrowsG%$detG%%diagG% (divergeG%(dotprodG%*eigenvalsG%,eigenvaluesG%-eigenvectorsG%+eigenvec tsG%,entermatrixG%&equalG%,exponentialG%'extendG%,ffgausselimG%*fibona cciG%+forwardsubG%*frobeniusG%*gausselimG%*gaussjordG%(geneqnsG%*genma trixG%%gradG%)hadamardG%(hermiteG%(hessianG%(hilbertG%+htransposeG%)ih ermiteG%*indexfuncG%*innerprodG%)intbasisG%(inverseG%'ismithG%*issimil arG%'iszeroG%)jacobianG%'jordanG%'kernelG%*laplacianG%*leastsqrsG%)lin solveG%'mataddG%'matrixG%&minorG%(minpolyG%'mulcolG%'mulrowG%)multiply G%%normG%*normalizeG%*nullspaceG%'orthogG%*permanentG%&pivotG%*potenti alG%+randmatrixG%+randvectorG%%rankG%(ratformG%$rowG%'rowdimG%)rowspac eG%(rowspanG%%rrefG%*scalarmulG%-singularvalsG%&smithG%,stackmatrixG%* submatrixG%*subvectorG%)sumbasisG%(swapcolG%(swaprowG%*sylvesterG%)toe plitzG%&traceG%*transposeG%,vandermondeG%*vecpotentG%(vectdimG%'vector G%*wronskianG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "side1 := [ 1,1,1] - [1,-2,3];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&side1G7%\"\"! \"\"$!\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "side2 := [1,1, 1] - [1,0,0];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&side2G7%\"\"!\"\" \"F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 169 "For both parts a) and b) , we take the cross product. Let's do b) first, since the vector aske d for is the cross product of the side vectors (times any non-zero num ber):" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 59 " b) A vector perpendicular to the plane of the triangle is:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "normvec := crossprod(side1,s ide2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(normvecG-%'vectorG6#7%\" \"&\"\"!F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "a) The area of the triangle is" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "(1/2)* norm (normvec);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"&\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 309 "\nc) A parallelepiped has one corner at the origin and edges which connect the origin to (1,1,1), (1,-2,3), a nd (1,0,0).\n\n The volume of the parallelepiped is the triple product , of the three edges, as beginning from the origin, which is the same \+ as the determinant of the 3 by 3 matrix constructed from them:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "det([[1,1,1],[1,-2,3],[1,0,0 ]]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 167 "2. Find all solutions of the following linear system s, or show that there is no such solution:\n\na)\n\n\0113 x + 2 y + \+ z = 3\n\n\0112 x + y + z = 0\n\n\0116 x + 2 y + 4 z = 6" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "mat1 := matrix(3,4,[3,2,1,3, 2,1,1,0,6,2,4,6]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%mat1G-%'matri xG6#7%7&\"\"$\"\"#\"\"\"F*7&F+F,F,\"\"!7&\"\"'F+\"\"%F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "pivot(%, 1,1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7%7&\"\"$\"\"#\"\"\"F(7&\"\"!#!\"\"F(#F*F(! \"#7&F,F0F)F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "pivot(%, 2 ,2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7%7&\"\"$\"\"!F(! \"*7&F)#!\"\"F(#\"\"\"F(!\"#7&F)F)F)\"#7" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 107 "Since we have a row of 0's at the bottom followed by a 1 2, there is no solution. Let's ask Maple directly:" }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "mat2 := m atrix(3,3,[3,2,1,2,1,1,6,2,4]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%% mat2G-%'matrixG6#7%7%\"\"$\"\"#\"\"\"7%F+F,F,7%\"\"'F+\"\"%" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "linsolve(mat2,[3,0,6]);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "(No solutions are given)" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 2 "b) " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 67 "\011- x + y + 2 z = 3\n\n\0113 x - y + z = 0\n\n\011- x + 3 y + 4 \+ z = 6" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "mat3 := matrix(3,4 , [-1,1,2,3,3,-1,1,0,-1,3,4,6]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% %mat3G-%'matrixG6#7%7&!\"\"\"\"\"\"\"#\"\"$7&F-F*F+\"\"!7&F*F-\"\"%\" \"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "pivot(%,1,1);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7%7&!\"\"\"\"\"\"\"#\"\"$7 &\"\"!F*\"\"(\"\"*7&F-F*F*F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "pivot(%,2,2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7%7 &!\"\"\"\"!#!\"$\"\"#F*7&F)F,\"\"(\"\"*7&F)F)!\"&!\"'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 22 "Now we can backsolve. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "backsub(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'vectorG6#7%#!\"$\"#5#\"\"$F)#\"\"'\"\"&" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 7 "3. Let" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "Amat := matrix(2,2, [0,1,2,2]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%%AmatG-%'matrixG6#7$7$\"\"!\"\"\"7$\"\"#F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "Bmat := matrix(3,3, [0,-1,0,1,0,1,1,1,0]);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%%BmatG-%'matrixG6#7%7%\"\"!!\"\"F*7% \"\"\"F*F-7%F-F-F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "a) det(A) \+ + det (B) = " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "det(Amat) \+ + det(Bmat);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 2 "b)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "inverse(Amat);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7$7$!\" \"#\"\"\"\"\"#7$F*\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 " evalm(% &* %);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7$7$#\"\"$\"\"##!\"\"F*7$F,#\"\"\"F*" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "inverse(Bmat);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7%7%\"\"\"\"\"!F(7%!\"\"F)F)7%F+F(F +" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 239 "4. A 3 by 3 matrix M has t he following properties:\n\n\011(i). If v is a position vector on the y-axis, then M v is the closest point to v on the line x=0, y = z = t .\n\n\011(ii). If v lies in the x-z plane , then M v is rotated about the y-axis." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 9 "(iii). " }{METAFILE 68 37 37 1 ":::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::vZp\\:RCL^KNZya ;yyyyyy;Z::L^:RCwblGkj?giPfdcA@ ZDR:EBG_B>EBG>ZeN[EFZZr;;Z:bB@Z:>Z: Bb;bi@d:U=AUW_eVEeUcEVYUTWEW;;xe\\b:@:bij;xYtDqjtpslpjLql^mgFJoxpntPJ^_?I^fcohZv_iog_?hr?^_?IRSGU=qDB[cE_sFkCH[cG;CF;CFn?:BBuDBAuUWuR=EWU rEcDBquEGuVMeXEEBEEX:;sEGUWWESEeV;SSJR^^GGLplZ\\wgf_fZfFBFBBR=YcSUURcEBqDBGuVJR`Z>@uLlP`Z nfcog^ofiogn?^`gg[kp@poPPmxPqrVEMmx@ppqTqlLqqpQJDpntPl^l :Jnxpu^m?GpQJD@CEBP@[CBmcF;sEcTTU]gNdigg[ogZ>`Z>@f`j>^Ng[bfcc> ^ng[qf`Z^`p>^i^D::[;e;V`c>^n;mcF::JRjT:[SD;CWjRHMVgw?^\\;jR>F`j>aZv`ZfC]SFkCBiK`F`kjRLMTfC]cG@MTD=RFacF ;SH_;Mml:JJ<=P=RIMCBcmR`mR@f@JR`LJ:`MS::ZjZo::jRHmVam>^o>^Gg;isF;SGln@@mURFcSG;SM>amRFBMH_m:XmSf@U\\qjRV `Z^cGjR<ZAR:;R:;B<`Z\\r:@;:jT>Z\\b:lLy?:H\\dN:D\\f\\weYwewG_bV^ZNfb^a\\>^dnit>^ uNfJ?a`Vfof`dfcZ^a]G^wFdXWe]F^Znemnejnenfiw?^ffeZ^A:BFwDFPmxpQPtnxHLJD PJLNJDpJ\\\\\\G^FG^QwdwgevWE;ry1:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 22 "a) The matrix is....." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 204 "The key idea her e is the basic modeling theorem. Fact (i) tells us that the second co lumn is the position vector on the line x=0, y = z = t which is close st to (0,1,0). A little trig shows that this is" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "col2 := matrix(3,1,[0,1/sqrt(2), 1/sqrt(2)]); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%col2G-%'matrixG6#7%7#\"\"!7#,$* $-%%sqrtG6#\"\"#\"\"\"#\"\"\"F1F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 121 "Now, what rotation matrix performs the actions in (ii) and (iii)? (This is really not part of the answer, only a step!):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "Rot := matrix(3,3,[4/5,0,-3/5,0,1,0 ,3/5,0,4/5]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$RotG-%'matrixG6#7% 7%#\"\"%\"\"&\"\"!#!\"$F,7%F-\"\"\"F-7%#\"\"$F,F-F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 12 "Let's check:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "evalm(Rot &* [3,0,4]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'vectorG6#7%\"\"!F'\"\"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "e1 := matrix(3,1,[1,0,0]): e3 := matrix(3,1,[0,0,1]): " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "col1 := evalm(Rot &* e1 );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%col1G-%'matrixG6#7%7##\"\"%\" \"&7#\"\"!7##\"\"$F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "col 3 := evalm(Rot &* e3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%col3G-%'m atrixG6#7%7##!\"$\"\"&7#\"\"!7##\"\"%F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "And the answer is..." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "Mmat = augment(col1,col2,col3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%%MmatG-%'matrixG6#7%7%#\"\"%\"\"&\"\"!#!\"$F,7%F-,$*$ -%%sqrtG6#\"\"#\"\"\"#\"\"\"F6F-7%#\"\"$F,F1F*" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "45 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }