2.1 Mean value property

This proof is almost identical to the mean value theorem proof given for harmonic
functions. First define
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Substituting y = x + rz gives r"~'dS (z) = dS (y) and
O(r) = f u(x + rz)dS (z)
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Next we take the derivative of @ respect r and justify bringing the differentiation into
the integral sign. Using the mean value theorem for one variable we have for some ¢
between 0 and h
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Since the integrand for small enough h is entirely interior to U, it is continuous on a
compact set, and therefore uniformly continuous. To show that the sequence above
converges to the integral of the derivative, consider the difference below. Pick € > 0.
There must exist some ¢ > 0 such that
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Choosing such an h we have
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Letting 2 — 0 lets us bring the differentiation inside just like we wanted to. Next use
the chain rule to rewrite u, and return to the original variable y.
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Using Green’s theorem this can be written
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This means ®(r) is increasing for all » > 0. A lower bound on ®(r) could therefore be
established by taking the limit as » — 0. This limit is:
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Therefore u(x) < Jg Bx r)u(y)dS (y) Rewrite this as
amnru(x) = f u(y)ds (y)

OB(x,r)
Integrating both sides with respect to r gives:
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2.2 Maximum principle

The claim is maxg;u = maxsy u. A theorem similar to this is shown in the book for
harmonic functions but despite the fact that it states connectedness of U is unnecessary,
it actually seems to use it since it proves (ii) then says (i) follows from (ii) without
proof. Anyway the argument here is a bit different so connectedness never comes up.
First suppose the maximum M is obtained for some xp € U. Using the mean value
property yields

u(xp) =M < JC u(y)dy
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A contradiction could be obtained if it were shown that the right side of this equation
is actually strictly less than M. This is done as follows. Suppose u(y) < M on some set
of positive measure.
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This shows that u(x)=M a.e. and by continuity everywhere on B(x,r). Fix xo and repeat
this argument for each r < dist{xy, 0U}. As r — dist{xy,0U}, dist{B(xo,r),0U} — 0
so for some sequence x, in U, inf,dist{x,,0U} = 0. Since U C U which is compact,
some subsequence x,, converges to some element x;, in JU. Since u € CX(U) the
continuity at the boundary yields

klim u(x,) = u(]}im Xp,) = u(xp)

Since each x,, € B(xo,ry,,) for some r,, < dist{xo,0U}, u(x,) = M. The sequence
on the left is therefore constant implying u(x;) = M and that gives the result desired.

2.3 Convex functions map harmonic to subharmonic

Any convex function @: R — R that has a second derivative satisfies ®"(x) > 0. The
result of this section is to show that for any convex function ® with a second derivative
the function

v(x) = O(u(x))

is subharmonic when u is harmonic. To do this, compute:
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Where on the last line the fact that ®”(x) > 0 was used. Multiplying the equality by -1
on each sides gives that v is subharmonic.

2.4 Du - Du is subharmonic

The purpose of this section is to show that the function Du - Du is subharmonic when
u is harmonic. To do this, consider first the fact that ®@(x) = x> has a positive second
derivative everywhere of 2 therefore it is convex. Next use the fact that any harmonic
function is C*. Differentiate both sides of Laplace’s equation to get:

(Au)y, = Auy, =0



This is Laplace’s equation for the function u,,. By the theorem proven above, ®(u,,) is
subharmonic. Therefore
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