
2.1 Mean value property
This proof is almost identical to the mean value theorem proof given for harmonic
functions. First define

Φ(r) :=
!
∂B(x,r)

u(y)dS (y)

Substituting y = x + rz gives rn−1dS (z) = dS (y) and

Φ(r) =
!
∂B(0,1)

u(x + rz)dS (z)

Next we take the derivative of Φ respect r and justify bringing the differentiation into
the integral sign. Using the mean value theorem for one variable we have for some ξ
between 0 and h

Φ
′(r) = lim

h→0

!
∂B(0,1)

u(x + (r + h)z) − u(x + rz)
h

dS (z)

= lim
h→0

!
∂B(0,1)

ur(x + (r + ξ)z)dS (z)

Since the integrand for small enough h is entirely interior to U, it is continuous on a
compact set, and therefore uniformly continuous. To show that the sequence above
converges to the integral of the derivative, consider the difference below. Pick ε > 0.
There must exist some δ > 0 such that

|ur(x + (r + h)z) − ur(x + rz)| < ε
∀|h| < δ

Choosing such an h we have

|

!
∂B(0,1)

ur(x + (r + ξ)z) − ur(x + rz)dS (z)|

≤

!
∂B(0,1)

|ur(x + (r + ξ)z) − ur(x + rz)|dS (z)

≤

!
∂B(0,1)

εdS (z) = ε

Letting h → 0 lets us bring the differentiation inside just like we wanted to. Next use
the chain rule to rewrite ur and return to the original variable y.

Φ
′ (r) =

!
∂B(x,r)

z · Du(y)dS (y)

=

!
∂B(x,r)

y − x
r
· Du(y)dS (y) =

!
∂B(x,r)

ν · Du(y)dS (y)
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Using Green’s theorem this can be written
1

α(n)nrn−1

∫
∂B(x,r)

ν · Du(y)dS (y)

=
r

α(n)rn

∫
B(x,r)
&udy

≥ 0

This means Φ(r) is increasing for all r > 0. A lower bound on Φ(r) could therefore be
established by taking the limit as r → 0. This limit is:

lim
r→0
Φ(r) =

lim
r→0

!
∂B(x,r)

u(y)dS (y) = u(x)

Therefore u(x) ≤
"
∂B(x,r)u(y)dS (y) Rewrite this as

α(n)nrn−1u(x) =
∫
∂B(x,r)

u(y)dS (y)

Integrating both sides with respect to r gives:

α(n)rnu(x) ≤
∫ r

0

∫
∂B(x,r′)

u(y)dS (y)dr′

=

∫
B(x,r)

u(y)dy⇒ u(x) ≤
!
B(x,r)

u(y)dy

2.2 Maximum principle
The claim is maxU u = max∂U u. A theorem similar to this is shown in the book for
harmonic functions but despite the fact that it states connectedness of U is unnecessary,
it actually seems to use it since it proves (ii) then says (i) follows from (ii) without
proof. Anyway the argument here is a bit different so connectedness never comes up.
First suppose the maximum M is obtained for some x0 ∈ U. Using the mean value
property yields

u(x0) = M ≤
!
B(x,r)

u(y)dy

A contradiction could be obtained if it were shown that the right side of this equation
is actually strictly less than M. This is done as follows. Suppose u(y) < M on some set
of positive measure. !

B(x,r)
u(y)dy =

1
α(n)rn

∫
{y : u(y)=M}

u(y)dy + 1
α(n)rn

∫
{y : u(y)<M}

u(y)dy

<
1

α(n)rn

∫
{y : u(y)=M}

u(y)dy + 1
α(n)rn

∫
{y : u(y)<M}

M

= M
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This shows that u(x)=Ma.e. and by continuity everywhere on B(x,r). Fix x0 and repeat
this argument for each r < dist{x0, ∂U}. As r → dist{x0, ∂U}, dist{B(x0, r), ∂U} → 0
so for some sequence xn in U, in fndist{xn, ∂U} = 0. Since U ⊂ U which is compact,
some subsequence xnk converges to some element xb in ∂U. Since u ∈ C2(U) the
continuity at the boundary yields

lim
k→∞

u(xnk ) = u( limk→∞ xnk ) = u(xb)

Since each xnk ∈ B(x0, rnk ) for some rnk < dist{x0, ∂U}, u(xnk ) = M. The sequence
on the left is therefore constant implying u(xb) = M and that gives the result desired.

2.3 Convex functions map harmonic to subharmonic
Any convex function Φ : R → R that has a second derivative satisfies Φ′′(x) ≥ 0. The
result of this section is to show that for any convex functionΦ with a second derivative
the function

ν(x) = Φ(u(x))

is subharmonic when u is harmonic. To do this, compute:

νxi (x) = Φ
′(u(x))uxi(x)

νxixi = Φ
′′ (u(x))u2xi + uxixiΦ

′ (u(x))

⇒ &ν(x) =
n∑
i=1
νxixi =

n∑
i=1
Φ
′′ (u(x))u2xi +Φ

′(u(x))&u

=

n∑
i=1
Φ
′′ (u(x))u2xi ≥ 0

Where on the last line the fact that Φ′′ (x) ≥ 0 was used. Multiplying the equality by -1
on each sides gives that ν is subharmonic.

2.4 Du · Du is subharmonic
The purpose of this section is to show that the function Du · Du is subharmonic when
u is harmonic. To do this, consider first the fact that Φ(x) = x2 has a positive second
derivative everywhere of 2 therefore it is convex. Next use the fact that any harmonic
function is C∞. Differentiate both sides of Laplace’s equation to get:

(&u)xi = &uxi = 0
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This is Laplace’s equation for the function uxi . By the theorem proven above, Φ(uxi) is
subharmonic. Therefore

&(Du · Du) = &
n∑
j=1

u2x j = &
n∑
j=1
Φ(uxj)

=

n∑
j=1
&Φ(uxj) ≥

n∑
j=1
0 = 0
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