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REAL ANALYSIS Spring 2003

SOLUTIONS TO SOME PROBLEMS

Warning:These solutions may contain errors!!

PREPARED BY SULEYMAN ULUSOY

PROBLEM 1. Suppose fn : X → [0,∞] is measurable for n = 1, 2, 3, ...;
f1 ≥ f2 ≥ f3 ≥ ... ≥ 0; fn(x)→ f(x) as n→∞, for every x ∈ X .
a)Give a counterexample to show that we do not have generally the following result.
limn→∞

∫
X
fndµ =

∫
X
fdµ.

b) Without changing any other assumptions just add one more assumption and prove
that the conclusion is satisfied in this case.

SOLUTION.
a)The standard example is the following.Let fn = 1[n,∞) for n = 1, 2, 3, ...,where 1X
represents the characteristic function of the set X.Then one can easily show that f = 0
but limn→∞

∫
X
fndµ does not exist.

Consider fn = 1
n
1[n,∞) for n = 1, 2, 3, ...,where 1X represents the characteristic function

of the set X. Then one can easily checks that f = 0 but limn→∞
∫
X
fndµ does not exist.

Here is another example:In this example we give a counterexample to the case where we
have strict inequality.
Let f = 0.Let fn = 1

n
if −∞ < x ≤ n and fn = 1

2
+ 1

n
if n < x < ∞.Thus fn strictly

decreases to f = 0 but
∫
X
fndµ =∞ for all n yet

∫
X
fndµ = 0.

b) If we assume that f1 ∈ L1(X,µ) then the conclusion is satisfied.Here is the proof :
Consider the sequence gn = f1 − fn since f1 > f2 > f3 > ... > 0 we have gn+1 > gn > 0
for all n = 1, 2, 3, .....Also gn(x)→ f1(x)− f(x) as n→∞.Now we apply the Monotone
Convergence Theorem to the sequence gn and get limn→∞

∫
X
gndµ =

∫
X

limn→∞ gndµ.
But this means that

∫
X
f1dµ−limn→∞

∫
fndµ =

∫
f1dµ−

∫
fdµ.Now since f1 ∈ L1(X,µ)

we can delete the term
∫
f1dµ from both sides and get limn→∞

∫
X
fndµ =

∫
X
fdµ.

PROBLEM 2. Suppose µ(X) < ∞, fn is a sequence of bounded complex measurable
functions on X, and fn → f uniformly on X. Prove that limn→∞

∫
X
fndµ =

∫
X
fdµ.

Show by a counterexample that the conclusion is not valid if we omit µ(X) <∞.
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SOLUTION. We first establish that the function f is integrable.For this note that we
can choose N so large that |fN − f | < ε/2 and for any given ε > 0.Then we have the
following estimate :∫
X
|f |dµ ≤

∫
X
|fN − f |dµ +

∫
X
|fN |dµ ≤ (ε/2)µ(X) + Mµ(X) (*) where M < ∞ is a

bound for fN(by assumption fn’s are bounded for all n).Since µ(X) <∞ the right hand
side of (*) is finite,which shows that f is integrable.Now we have N so that |fN−f | < ε/2
for fixed ε.Now consider the following estimate for large enough n:∫
X
|fn − f |dµ ≤

∫
X
|f − fN |dµ+

∫
X
|fn − fN |dµ < (ε/2)µ(X) + (ε/2)µ(X).

Since ε > 0 is arbitrary and µ(X) <∞ we have that limn→∞
∫
X
fndµ =

∫
X
fdµ.

For a counterexample to the case µ(X) = ∞,consider fn = 1/n1[0, n) where 1X repre-
sents the charactristic function of the set X. Then one can easily checks that∫

X

fndµ = 1,∀n

but f = 0.Hence the conclusion does not necessarily hold when µ(X) =∞.

PROBLEM 3. Suppose f1 ∈ L1(X,µ).Prove that to each ε > 0 there exists a δ > 0
such that

∫
E
|f |dµ < ε whenever µ(E) < δ.

SOLUTION.Define fn = |f | ∧ n. i.e. fn = |f |, if |f | ≤ n and fn = n ,if |f | > n.Then
fn → |f | as n→∞. Therefore we can use Monotone Convergence Theorem as fn+1 ≥ fn
and fn ≥ 0.Now choose N so that

∫
E
|f − fN | < ε/2 for given ε > 0.Then we have the

following estimate.∫
E
|f |dµ <

∫
E
|f − fN |dµ +

∫
E
|fN |dµ < (ε/2) + Nµ(E) < ε/2 + Nµ(E) < ε whenever

µ(E) < δ < ε/(2N).Thus the assertion is proved.

PROBLEM 4. Let X be an uncountable set,let M be the collection of all sets E ⊂ X
such that either E or Ec is at most countable, and define µ(E) = 0 in the first case,
µ(E) = 1 in the second case.Prove that M is a σ-algebra in X and that µ is a measure
on M .

SOLUTION. The solution is obtained by direct applications of definitions.
M is a σ-algebra in X: Clearly ∅ and X are in M .Also suppose F is a member of M then
we have two cases.Either F is countable , in this case (F c)c = F is countable which shows
that F c is in M or F c is countable which shows that F c is in M . The most interesting
part is to show that M is closed under countable unions.Suppose E1, E2, E3, ... is contable
collection of sets each of which is in M .Then we have to consider the following cases:
1.) Suppose each Ei is countable.In this case the union will be countable and hence it
will lie in M .
2.) Suppose now that there exists Ek for some k such that E is uncountable.Then Ec is
countable.And by the De Morgan’s Law we have (∪Ei)c ⊂ Ec

k and this shows that the
complement of the union is countable and so the union lies in M .
Therefore M is a σ-algebra in X.
µ is a measure on M :We need to show the following assertions.
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1.)µ(∅) = 0
2.)Countable additivity.i.e.If E1, E2, E3, ... is contable collection of sets each of which is
in M then µ(∪Ei) = Σµ(Ei).
The first assertion is obvious as ∅ is countable.So by definition µ(∅) = 0.
The interesting part is the second assertion.Suppose first that each of Ei is countable. In
this case the union of these sets is also countable.So we have µ(∪Ei) = 0 by definition.On
the other hand since each Ei is countable µ(Ei) = 0 for all i.Thus the second assertion
above holds in this case.
Now suppose that ∃ k such that Ek is uncountable.Then Ec

k is countable and by the De
Morgan’s Law used above we again have (∪Ei)c ⊂ Ec

k which shows that µ(∪Ei) = 1.If
we consider the summation Σµ(Ei) we see that it is equal to 1 since the only term that
is nonzero(1) is µ(Ek).So we again have the validity of the second assertion.
Thus µ defined above is a measure in M .

PROBLEM 5. Let Ek be a sequence of measurable sets in X, such that

∞∑
k=1

µ(Ek) <∞.(∗)

a.)Then show that almost all x ∈ X lie in at most finitely many sets Ek.
b.)Is the conclusion still valid if we omit the condition (∗)?

SOLUTION.This is known as the Borel-Contelli’s Lemma.There are two ways to do
the part a.)
First Proof:If A is the set of all x which lie in infinitely many Ek, we need to prove that
µ(A) = 0.Put

g(x) =
∞∑
k=1

1Ek(x), (x ∈ X)

where 1K represents the characteristic function of the set K.Observe that for each x,
each term in this series is either 1 or 0.Hence x ∈ X if and only if g(x) = ∞.But we
know that the integral of g is equal to the sum in (∗).Thus g ∈ L1(µ),and so g(x) <∞
a.e.
Second Proof:From set theory we see that the set we are looking for is A = ∩∞n=1∪∞k=nEk.
Define Fn = ∪∞k=nEk.Then clearly Fn+1 ⊂ Fn.Thus

µ(A) = lim
n→∞

µ(Fn) = lim
n→∞

µ(∪∞k=nEk) ≤ limn→∞

∞∑
k=n

µ(Ek)(∗∗)

But the last term in (∗∗) is the limit of the remainder term of the series (∗) which is
finite.Hence it goes to 0.Thus the assertion is proved.
b.)As you guess the conclusion is not valid if we omit the finiteness condition in (∗).Here
is a simple example.Take Ek = (−∞, 1/n).Then the sum in (∗) is equal to ∞.And
A = (−∞, 0] which has measure ∞.
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PROBLEM 6. Find a sequence (fn) of Borel measurable functions on R which decreses
uniformly to 0 on R , but

∫
fndm = ∞ for all n.Also,find a sequence (gn) of Borel

measurable functions on [0, 1] such that gn → 0 pointwise but
∫
gndm = 1 for all n.

(here m is the Lebesgue measure!)

SOLUTION.For the first part fn = 1/n1[1,∞) works(easy Calculus exercise!!).For the
second part one sees that gn = n1[0,1/n] satisfies all the assertions(again this is easy to
verify).

PROBLEM 7. Show that Monotone Convergence Theorem can be proved as a corollary
of the Fatou’s lemma.

SOLUTION. Applly the Fatou’s lemma to the following sequences (f+fn) and (f−fn).
Since fn ↑ f both of these sequences are non-negative. Hence, application of the Fatou’s
lemma to the sequence (f + fn) gives lim inf

∫
fn ≥

∫
f . And application of Fatou’s

lemma to the sequence (f − fn) gives lim sup
∫
fn ≤

∫
f .Combination of these two

inequalities proves the Monotone Convergence Theorem.

PROBLEM 8. Let f ∈ L+ and
∫
f <∞, then show that the set

{x : f(x) > 0} is σ−finite.

SOLUTION.This follows from the following equality.

∪∞n=1{x : f(x) > 1/n} = {x : f(x) > 0}.

Each of the sets on the left hand side of this equality is of finite measure , since otherwise
f would not have finite integreal.And this shows that the set in question is the union of
sets of finite measure.

PROBLEM 9.
a.)If f is nonnegative and integrable on A, then show that

µ({x : x ∈ A, f(x) ≥ c}) ≤ 1/c

∫
A

f(x)dµ

b.)If
∫
A
|f(x)|dµ = 0, prove that f(x) = 0 a.e.

SOLUTION.
a.)This is known as the Chebyshev’s inequality.If A1 = {x : x ∈ A, f(x) ≥ c}, then∫

A

f(x)dµ =

∫
A1

f(x)dµ+

∫
A−A1

f(x)dµ ≥
∫
A1

f(x)dµ ≥ cµ(A1).

This proves the result.
b.)By the Chebyshev’s inequality,

µ({x : x ∈ A, f(x) ≥ 1/n}) ≤ n

∫
A

f(x)dµ = 0,∀n = 1, 2, ....
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Therefore,

µ({x : x ∈ A, f(x) 6= 0}) ≤
∞∑
n=1

µ({x : x ∈ A, |f(x)| ≥ 1/n}) = 0.

And this clearly proves the desired result.

PROBLEM 10.
a.)Consider a measure space (X,µ) with a finite,positive,finitely additive measure µ.
Prove that µ is countably additive if and only if it satisfies the following condition.
If An is a decresing sequence of sets with empty intersection then

lim
n→∞

µ(An) = 0.

b.)Now suppose thatX is locally compact Hausdorff space, thatBr is the Borel σ−algebra,
and that µ is finite, positive, finitely additive measure on Br.Suppose moreover that µ
is regular, that is for each B ∈ Br we have,

µ(B) = sup
K
{µ(K) : K ⊆ B,K − compact}

Prove that µ is countably additive.

SOLUTION.
a.)Sufficency:Let (Bn) be countably many measurable sets which are mutually dis-
joint.Let An = ∪∞i=n+1Bi.Then ∩∞n=1An = ∅.We have

µ(∪∞n=1Bn) = lim
n→∞
{µ(∪ni=1Bi) + µ(∪∞i=n+1Bi)}

= lim
n→∞
{
∞∑
i=1

µ(Bi) + µ(An)} =
∞∑
i=1

µ(Bi).

Therefore µ is a measure.The necessity is obvious.
b.) If µ is not countably additive ,by a.) there is a decreasing sequence (An) of measurable
sets with empty intersection such that

lim
n→∞

µ(An) = inf µ(An) > 0.

For each n there exists Kn contained in An, such that

µ(An) < µ(Kn) + 1/2n+1 inf
i
µ(Ai).

Then

µ(An − ∩ni=1Ki) ≤
n∑
i=1

µ(Ai −Ki) < 1/2 inf
i
µ(Ai)
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which implies that µ(∩ni=1Ki) 6= 0 and therefore ∩ni=1Ki 6= ∅.
Thus {∩ni=1Ki : n ∈ N} is a decreasing sequence of nonempty compact subsets in the
compact space K1.So ∩∞i=1Ki 6= ∅,which contradicts the fact that ∩∞n=1An = ∅.

PROBLEM 11. Let λ be Lebesgue measure on R. Show that for any Lebesgue
measurable set E ⊂ R with λ(E) = 1, there is a Lebesgue measurable set A ⊂ E with
λ(A) = 1/2.

SOLUTION. Define the function f : R → [0, 1] by f(x) = λ(E ∩ (−∞, x]), where
x ∈ R.It is continuous by the following inequality

|f(x)− f(y)| ≤ |x− y|,

wherex, y ∈ R.Since limx→−∞ f(x) = 0 and limx→∞ f(x) = 1, there is a point x0 ∈ R
such that f(x0) = 1/2.Put A = E ∩ (−∞, x0].

PROBLEM 12. Let m be a countably additive measure defined for all sets in a
σ−algebra M .
a.)If A and B are two sets in M with A ⊂ B, then show that m(A) ≤ m(B).
b.)Let (Bn) be any sequence of sets in M .Then show that m(∪∞n=1Bn) ≤

∑∞
n=1 m(Bn).

SOLUTION.These are almost trivial statements.
a.)We have B = A ∪ (B − A) and using countable additivity of m by taking other sets
to be empty gives, m(B) = m(A) +m(B−A).But m(B−A) ≥ 0. So the result follows.
b.)By set theory we can find a mutually disjoint sequence (An) such that ∪∞n=1An =
∪∞n=1Bn.So we have,

m(∪∞n=1Bn) = m(∪∞n=1An) =
∞∑
n=1

m(An) ≤
∞∑
n=1

m(Bn),

where the second equality follows from the countable additivity of m and the last in-
equlity follows from the fact that each term in the sum on the left is less than or equal
to the corresponding term on the right.i.e.An ⊆ Bn,∀n hence by part a.),m(An) ≤
m(Bn),∀n. So the result follows.

PROBLEM 13. a.)Let (En) be an infinite decreasing sequence of Lebesgue measurable
sets, that is, a sequence with En+1 ⊂ Enfor each n. Let m(E1) be finite, where m is the
Lebesgue meausre.Then show that m(∩∞i=1Ei) = limn→∞m(En).
b.)Show by acounterexample that we can not omit the condition m(E1) is finite.

SOLUTION.
a.) Let E = ∩∞i=1Ei, and let Fi = Ei − Ei+1.Then E1 − E = ∪∞i=1Fi, and the sets Fi are
pairwise disjoint.Hence,

m(E1 − E) =
∞∑
i=1

m(Fi) =
∞∑
i=1

m(Ei − Ei+1).
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But m(E1) = m(E1) +m(E1 −E), and m(Ei) = m(Ei+1) +m(Ei −Ei+1),since E ⊂ E1

and Ei+1 ⊂ Ei. Since m(Ei) ≤ m(E1) <∞, we have m(E1 − E) = m(E1)−m(E) and
m(Ei − Ei+1) = m(Ei)−m(Ei+1).Thus

m(E1)−m(E) =
∞∑
i=1

(m(Ei)−m(Ei+1)

= lim
n→∞

n∑
i=1

(m(Ei)−m(Ei+1)

= lim
n→∞

(m(E1)−m(En)

= m(E1)− lim
n→∞

m(En

Since m(E1) <∞, we have m(E) = limn→∞m(En)
b.)Let En = (n,∞).Then m(En) =∞ for all n,whereas ∩∞n=1En = ∅.

PROBLEM 14.
a.)Show that we may have strict inequality in Fatou’s Lemma.
b.)Show that Monotone Convergence Theorem need not hold for decreasing sequences
of functions.

SOLUTION.
a.)Consider the sequence (fn) defined by fn(x) = 1 if n ≤ x < n + 1, with fn(x) = 0
otherwise.Then, lim inf f(x) = 0 but

∫
fn(x) = 1,∀n. Hence the strict inequality holds.

b.)Let fn(x) = 0 if x < n and fn(x) = 1 if x ≥ n.i.e.fn(x) = 1[n,∞) where 1A
represents the characteristic function of the set A. Now clearly fn ↘ 0 but limn→∞

∫
fn

is undefined.Hence M.C.T. does not hold in this case.

PROBLEM 15. Let (fn) be a sequence of nonnegative measurable functions that
converge to f , and suppose that fn ≤ f,∀n. Then show that

∫
f = lim

∫
fn.

SOLUTION.We know that fn → f and fn ≤ f,∀n. Therefore we can choose a sub-
sequence fnk such that fnk ↗ f as k → ∞. Thus an application of the Monotone
Convergence Theorem to the sequence fnk gives the result.

PROBLEM 16. Suppose A ⊂ R is Lebesgue measurable and assume that

m(A ∩ (a, b)) ≤ (b− a)/2

for any a, b ∈ R, a < b.Prove that m(A) = 0.

SOLUTION.If m(A) 6= 0 there is an n such that m(A∩ (n, n+1) 6= 0.There is an open
set U in (n, n+ 1) such that

A ∩ (n, n+ 1) ⊆ U ⊆ (n, n+ 1)
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and m(U) < m(A ∩ (n, n+ 1)) + ε,where ε < m(A ∩ (n, n+ 1)).
There are at most countably many disjoint intervals (aj, bj)

′s such that U = ∪j(aj, bj).
Then A ∩ (n, n+ 1) = ∪A ∩ (aj, bj).We have

m(A∩(n, n+1)) =
∑
j

m(A∩(aj, bj) ≤
∑
j

(bj−aj)/2 = 1/2m(U) < 1/2(m(A∩(n, n+1))+ε)

which gives m(A ∩ (n, n+ 1)) < ε, a contradiction.

PROBLEM 17. Choose 0 < λ < 1 and construct the Cantor set Kλ as follows:Remove
from [0, 1] its middle part of length λ; we are left with two intervals L1 and L2. Remove
from each of them their middle parts of length λ|Ii|, i = 1, 2, etc and keep doing this ad
infimum. We are left with the set Kλ. Prove that the set Kλ has Lebesgue measure 0.

SOLUTION.Calim : For any n ∈ N , the total length of intervals removed in the n’th
step is λ(1− λ)n−1.
The claim holds for n = 1. Assume that it holds for k ≤ n. Then the total length of
intervals removed in the k + 1′th step is

λ(1−
k∑
i=1

λ(1− λ)i−1) = λ(1− λ)k.

By induction the claim holds for any n ∈ N .
It follows that the Lebesgue measure of Kλ is

1−
∞∑
n=1

λ(1− λ)n−1 = 0.

PROBLEM 18. Let A ⊂ [0, 1] measurable set of positive measure.Show that there
exist two points x′ 6= x′′ in A with x′ − x′′ rational.

SOLUTION.Denote all rational numbers in [−1, 1] by r1, r2, ..., rn, ...Denote An = {x+
rn : x ∈ A}.Then m(An) = m(A) > 0. An ⊂ [−1, 2].Thus,

∪∞i=1An ⊂ [−1, 2].

Suppose that An ∩ Am = ∅ if n 6= m. Then

∞∑
n=1

m(An) ≤ m([−1, 2]) = 3,

which contradics m(A) > 0. Therefore there must be some n,m such that An ∩Am 6= ∅.
Take z ∈ An ∩ Am. Then we can find x′, x′′ ∈ A such that

z = x′ + rn = x′′ + rm.
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Thus x′ − x′′ = rm − rn.

PROBLEM 19. Let f : Rn → R be an arbitrary function having the property that for
each ε > 0, there is an open set U with λ(U) < ε such that f is continuous on Rn−U(in
the relative topology).Prove that f is measurable.

SOLUTION.Let Uk be an open set such that λ(Uk) < 1/k and f is continuous on
Rn − Uk .Let fk = f1Rn−Uk (where 1A represents the characteristic function of the set
A), thenfk is measurable.For any ε > 0,

m∗({x : |fk − f |(x) ≥ ε}) = m∗({x ∈ Uk : |f(x)| ≥ ε}) ≤ 1/k.

It follows that (fk) converges to f in measure.Since Lebesgue measure is complete f is
measurable.

PROBLEM 20. Prove or disprove that composition of two Lebesgue integrable func-
tions with compact support f, g : R→ R is still integable.

SOLUTION.It is not true.For example, letf(x) = 1{0}(x) and g(x) = 1{0,1}(x), where
1A represents the characteristic function of the set A.Then f and g are integrable func-
tions with compact support. But,since g ◦ f ≡ 1, the function g ◦ f is not integrable.

PROBLEM 21. Let (X,M, µ) be a positive measure space with µ(X) < ∞. Show
that a measurable function f : X → [0,∞) is integrable (i.e. one has

∫
X
fdµ < ∞) if

and only if the series
∞∑
n=0

µ({x : f(x) ≥ n})

converges.

SOLUTION. Suppose f is integrable. Then

∞∑
n=0

µ({x : f(x) ≥ n}) =
∞∑
n=0

∞∑
m=n

µ({x : m ≤ f(x) < m+ 1})

∞∑
m=0

m∑
n=0

µ({x : m ≤ f(x) < m+ 1}) =
∞∑
m=0

(m+ 1)µ({x : m ≤ f(x) < m+ 1})

∞∑
m=0

mµ({x : m ≤ f(x) < m+ 1}) +
∞∑
m=0

µ({x : m ≤ f(x) < m+ 1})

∞∑
m=0

∫
{x:m≤f(x)<m+1}

f(x)dµ(x) + µ(X) =

∫
X

(f + 1)dµ <∞

Conversely, ∫
X

fdµ =
∞∑
m=0

∫
{x:m≤f(x)<m+1}

f(x)dµ(x)
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≤
∞∑
m=0

(m+ 1)µ({x : m ≤ f(x) < m+ 1}) =
∞∑
n=0

µ({x : f(x) ≥ n}) <∞

which shows that f is integrable.

PROBLEM 22.
a.) Is there a Borel measure µ (positive or complex) on R with the property that∫

R

fdµ = f(0)

for all continuous f : R→ C of compact support? Justify.
b.) Is there a Borel measure µ (positive or complex) on R with the property that∫

R

fdµ = f ′(0)

for all continuous f : R→ C of compact support? Justify.

SOLUTION.
a.) Yes. Let µ(E) = 1E(0), where 1A represents the characteristic function of the set A,
for any Borel set E.
b.) No. If there were such a Borel measure , let Φ ≥ 0 be a continuously differentiable
function of compact support, taking value 1 on [−1, 1].Then a contradiction occurs from
the following limits.

lim
n→∞

∫
R

Φ(t)et/ndt =

∫
R

Φ(t)dt > 0

and
lim
n→∞

(Φ(t)et/n)′|t=0 = lim
n→∞

(et/n/n)|t=0 = 0.

PROBLEM 23. Let fn be a sequence of real-valued functions in L1(R) and suppose
that for some f ∈ L1(R) ∫ ∞

−∞
|fn(t)− f(t)|dt ≤ 1/n2, n ≥ 1.

Prove that fn → f almost everywhere with respect to Lebesgue measure.

SOLUTION. Since

sup
n

∫ n∑
k=1

|fk+1 − fk|dt ≤
∞∑
k=1

(1/(k + 1)2 + 1/k2) <∞

by Levi’s theorem there is a measurable set E of measure 0 such that for any t ∈ R−E,

sup
n

N∑
k=1

|fk+1 − fk|(t) <∞.
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Therefore for any t ∈ R− E,

fn(t) = f1(t) +
n∑
k=2

(fk − fk−1)(t)

converges. It follows that fn → f almost everywhere.

PROBLEM 24. Let m denote the Lebesgue measure on [0, 1] and let (fn) be a sequence
in L1(m) and h a non-negative element of L1(m).Suppose that
i.)
∫
fngdm→ 0 for each g ∈ C([0, 1]) and

ii.) |fn| ≤ h for all n.
Show that

∫
A
fndm→ 0 for each Borel subset A ⊂ [0, 1].

SOLUTION.For any ε > 0, there is a δ > 0 such that
∫
E
hdm < ε, whenever m(E) < δ.

For such a δ there are a compact set K and an open set U such that (1)K ⊆ A ⊆ U
and (2)m(U −K) < δ. There is a continuous function g : [0, 1]→ R such that
(3)0 ≤ g ≤ 1, (4)g = 1 on K and (5)g = 0 outside U. Then we have

lim sup
n→∞

∫
A

fndm = lim sup
n→∞

|
∫ 1

0

fn1Adm|

≤ lim sup
n→∞

|
∫
A

fngdm|+ |
∫ 1

0

fn(1A − g)dm|

≤ lim sup
n→∞

|
∫
A

fngdm|+ |
∫ 1

0

h1U−Kdm| ≤ ε

It follows that limn→∞
∫
A
fndm = 0.

NOTE : Here 1B represents the characteristic function of the set B.

PROBLEM 25.
a.)Prove the Lebesgue Dominated Convergence Theorem.
b.)Here is a version of Lebesgue Dominated Convergence Theorem which is some kind
of extension of it.Prove this.
Let (gn) be asequence of integrable functions which converges a.e. to an integarble
function g.Let (fn) be asequence of measurable functions such that |fn| ≤ gn and (fn)
converges to f a.e. If

∫
g = lim

∫
gn, then

∫
f = lim

∫
fn.

c.) Show that under hypotheses of the part b.) we have
∫
|fn − f | → 0 as n→∞.

d.)Let (fn) be asequence of integrable functions such that fn → f a.e. with f is inte-
grable.Then show that∫
|f − fn| → 0 as n→∞ if and only if

∫
|fn| →

∫
|f | as n→∞.

SOLUTION.
a.) First let us state the theorem properly.
Let g be integrable over E and let (fn) be a sequence of measurable functions such that

11



|fn| ≤ g on E and for almost all x in E we have f(x) = lim fn(x). Then∫
E

f = lim

∫
E

fn.

P roof :The function g − fn is nonnegative so by Fatou’s Lemma we have∫
E

(g − fn) ≤ lim inf

∫
E

(g − fn).

Since |f | ≤ g, f is integrable, and we have∫
E

g −
∫
E

f ≤
∫
E

g − lim sup

∫
E

fn,

whence ∫
E

f ≥ lim sup

∫
E

fn.

Similarly, considering g + fn , we get∫
E

f ≤ lim inf

∫
E

fn,

and this completes the proof.
b.) We will try to use the same idea as in the above proof. Take hn := gn − fn, by
noting that hn ≥ 0 and kn := gn + fn.Applying the Foatou’s lemma to these sequences
we get the follwing inequalities combination of which proves the result.
Application of Fatou’s lemma to hn gives lim sup

∫
fn ≤

∫
f and application of the

Fatou’s lemma to kn gives lim inf
∫
fn ≥

∫
f.

c.)Take f = 0, gn = |fn| + |f | and g = 2|f | in part b.).Note that now our sequence is
|fn − f | which tends to 0 as n→∞.
d.)Suppose

∫
|f−fn| → 0 as n→∞.We have ||fn|−|f || ≤ |fn−f | and this immediately

gives
∫
|fn| →

∫
|f | as n→∞.

Conversely, suppose that
∫
|fn| →

∫
|f | as n → ∞.We will use part b.).Take gn =

2(|fn| + |f |) and note that gn → 4|f | and note also that |f | is integrable by Fatou’s
lemma.Now the result follows from part b.) by taking fn = |fn − f |+ |fn| − |f |.

PROBLEM 26. Evaluate

lim
n→∞

∫ n

0

(1 + x/n)ne−2xdx,

justifying any interchange of limits you use.

SOLUTION. W know that limn→∞(1+x/n)n = ex and (1+x/n)n ≤ (1+x/(n+1))n+1.
Also we have (1 + x/n)n ≤ ex. Therefore we get (1 + x/n)n ↗ ex, which gives that
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(1 + x/n)ne−2x ≤ e−x.Therefore we can apply the Dominated Convergence Theorem to
the function (1 +x/n)nex with the dominating function e−x.An easy computation gives,

lim
n→∞

∫ n

0

(1 + x/n)ne−2xdx = lim
n→∞

∫ ∞
0

1[0,n](x)(1 + x/n)ne−2xdx

=

∫ ∞
0

lim
n→∞

1[0,n](x)(1 + x/n)ne−2xdx =

∫ ∞
0

e−xdx = 1.

PROBLEM 27.
a.) Let (an) be a sequence of nonnegative real numbers. Set µ(∅) = 0, and for every
nonempty subset A of N (set of natural numbers) set µ(A) =

∑
n∈A an.Show that the

set function µ : P (N)→ [0,∞] is a measure.
b.) Let X be a nonempty set and let f : X → [0,∞] be a function.Define µ by
µ(A) =

∑
a∈A f(x) if A 6= ∅ and is at most countable, µ(A) = ∞ if A is uncountable,

and µ(∅) = 0.Show that µ is a measure.

SOLUTION.
a.) If (An) is a sequence of pairwise disjoint subsets of N and A = ∪∞n=1An, then note
that

µ(A) =
∑
k∈An

ak =
∞∑
n=1

(
∑
k∈An

ak) =
∞∑
n=1

µ(An).

This clearly shows that µ is a measure.
b.) We need to show the σ−additivity of µ. For that let (An) be asequence of pairwise
disjoint sequence of subsets of X. Set A = ∪∞n=1An. If some An is uncountable then A is
likewise uncountable , and hence , in this case µ(A) =

∑∞
n=1 µ(An) =∞ holds. On the

other hand, if each An is at most countable then A is also at most countable, and so

µ(A) =
∑
x∈A

f(x) =
∞∑
n=1

[
∑
a∈An

f(x)] =
∞∑
n=1

µ(An)

also holds.Therefore µ is σ−additive and hence it is a measure.

PROBLEM 28. Let F be a nonempty collection of subsets of a set X and let f : F →
[0,∞] be a function. Define µ : P (X)→ [0,∞] by µ(∅) = 0 and

µ(A) = inf{
∞∑
n=1

f(An) : (An) ⊆ F, and,A ⊆ ∪∞n=1An}

for each A 6= ∅, with inf ∅ =∞. Show that µ is an outer measure.

SOLUTION.(1) By definition we have µ(∅) = 0.
(2) (Monotonicity) : Let A ⊆ B and let (An) be a sequence in F with B ⊆ ∪∞n=1An.
Then A ⊆ ∪∞n=1An, and so µ(A) ≤

∑∞
n=1 f(An). Therefore

µ(A) ≤ inf{
∞∑
n=1

f(An) : (An) ⊆ F, and,B ⊆ ∪∞n=1An} = µ(B).
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If there is no sequence (An) withB ⊆ ∪∞n=1An, then µ(B) =∞, and clearly µ(A) ≤ µ(B).
(3) (Subadditivity) : Let (En) be a sequence of subsets of X and let E = ∪∞n=1En.If∑∞

n=1 µ(En) =∞, then µ(E) ≤
∑∞

n=1 µ(En) is obvously ture. So, assume
∑∞

n=1 µ(En) <
∞ and let ε > 0. For each n pick a sequence (Ank) of F with En ⊆ ∪∞k=1A

n
k and

∞∑
k=1

f(Ank) < µ(En) + ε/2n.

Clearly, E ⊆ ∪∞n=1 ∪∞k=1 A
n
k holds, and so

µ(E) ≤
∞∑
n=1

∞∑
k=1

f(Ank) <
∞∑
n=1

[µ(En) + ε/2n] =
∞∑
n=1

µ(En) + ε.

Since ε > 0 is arbitrary , it follows that

µ(E) = µ(∪∞n=1En) ≤
∞∑
n=1

µ(En).

Therefore µ is an outermeasure.

PROBLEM 29. Let f : R→ R be a Lebesgue integrable function.Show that

lim
t→∞

∫
f(x)cos(xt)dλ(x) = lim

t→∞

∫
f(x)sin(xt)dλ(x) = 0

SOLUTION. This is known as the Riemann-Lebesgue lemma. Since simple functions
are dense in integrable functions, it suffices to prove the result for the special case
f = 1[a,b) where 1B represents the characteristic function of the set B. So, let f = 1[a,b)

where −∞ < a < b <∞. In this case, for each t > 0 we have

|
∫
f(x)cos(xt)dλ(x)| = |

∫ b

a

cos(xt)dx| = |sin(xt)/t|x=b
x=a| = |{sin(bt)−sin(at)}/t| ≤ 2/t,

and so limt→∞
∫
f(x)cos(xt)dλ(x) = 0 holds. In a similar fashion, we can show that

limt→∞
∫
f(x)sin(xt)dλ(x) = 0.

PROBLEM 30. For a sequence (An) of subsets of a set X define
lim inf An = ∪∞n=1 ∩∞i=n Ai and lim supAn = ∩∞n=1 ∪∞i=n Ai
Now let (X,S, µ) be a measure space and let (En) be a sequence of measurable sets.Show
the following:
a.) µ(lim inf En) ≤ lim inf µ(En)
b.) If µ(∪∞n=1En) <∞, then µ(lim supEn) ≥ lim inf µ(En)

SOLUTION.
a.) Note that ∩∞i=nEi ↗ lim inf En and ∩∞i=n ⊆ En holds for each n.Thus,

µ(lim inf En) = lim
n→∞

µ(∩∞i=nEi) ≤ lim inf µ(En).
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b.) Note that ∪∞i=nEi ↘ lim supEn. Hence,since µ(∪∞n=1En) <∞

µ(lim supEn) = lim
n→∞

µ(∪∞i=nEi) ≥ lim supµ(En).

PROBLEM 31.
a.) Let X be a nonempty set and let δ be the Dirac measure on X with respect to a point.
Show that every function f : X → R is integrable and that

∫
fdδ = f(a)δ(a) = f(a).

b.) Let µ be the counting measure on N(set of natural numbers). Show that a function
f : N → R is integrable if and only if

∑∞
n=1 |f(n)| < ∞. Also, show that in this case∫

fdµ =
∑∞

n=1 f(n).

SOLUTION.
a.) Note that f = f(a)1{a} a.e. holds. Therefore, the function f is integrable and∫
fdδ = f(a)δ({a}) = f(a).

b.) Let f : N → R. Since every function is measurable, f is integrable if and only if
both f+ and f− are integrable. So, we can assume that f(k) ≥ 0 holds for each k.
If φn =

∑n
k=1 f(k)1{k}, then (φn) is a sequence of step functions such that φn ↗ f(k) as

n→∞ for each k, and ∫
φndµ =

n∑
k=1

f(k)↗
∞∑
k=1

f(k)

as n → ∞. This shows that f is integrable if and only if
∑∞

k=1 f(k) < ∞, and in this
case

∫
fgµ =

∑∞
k=1 f(k).

PROBLEM 32. Let (X,S, µ) be a measure space and let f1, f2, f3, ... be nonnegative
integrable functions such that fn → f a.e. and lim

∫
fndµ =

∫
fdµ. If E is a measurable

set, then show that limn→∞
∫
E
fndµ =

∫
E
fdµ.

SOLUTION. By assumptions the functions f11E, f21E, f31E, ...are nonnegative and
integrable (because 0 ≤ fn1E ≤ fn ) and fn1E → f1E holds. Using Fatou’s lemma we
get ∫

E

fdµ =

∫
lim inf fn1Edµ ≤ lim inf

∫
fn1Edµ = lim inf

∫
E

fndµ.(∗)

Similarly, we have ∫
Ec
fdµ ≤ lim inf

∫
Ec
fndµ.(∗∗)

Therefore, ∫
fdµ =

∫
E

fdµ+

∫
Ec
fdµ ≤ lim inf

∫
E

fndµ+ lim inf

∫
Ec
fndµ

≤ lim inf(

∫
E

fndµ+

∫
Ec
fndµ) = lim inf(

∫
fndµ) =

∫
fdµ,
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It follows that ∫
E

fdµ+

∫
Ec
fdµ = lim inf

∫
E

fndµ+ lim inf

∫
Ec
fndµ,

and from (*) and (**), we see that

lim inf

∫
E

fndµ =

∫
E

fdµ.

Now let (gn) be a subsequence of (fn). Then ,
gn → f a.e. and limn→∞

∫
gndµ =

∫
fdµ. By the above result, we infer that

lim inf

∫
E

gndµ =

∫
E

fdµ,

and so there exists a subsequence (gkn) of the sequence (gk) such that lim
∫
E
gkndµ =∫

E
fdµ. In other words, we have shown that every subsequence of a sequence of real

numbers (
∫
E
fndµ) has a convergent subsequence converging to

∫
E
fdµ.This means that

limn→∞
∫
E
fndµ =

∫
E
fdµ holds.

PROBLEM 33. Let f : [0,∞)→ R be a continuous function such that f(x+1) = f(x)
holds for all x ≥ 0. If g : [0, 1]→ R is an arbitrary continuous function, then show that

lim
n→∞

∫ 1

0

g(x)f(nx)dx = (

∫ 1

0

g(x)dx)(

∫ 1

0

f(x)dx).

SOLUTION. Observe that by induction f(x + k) = f(x) holds for all x ≥ 0 and for
all nonnegative integers k.
The change of variables u = nx yields∫ 1

0

g(x)f(nx)dx = 1/n

∫ n

0

g(u/n)f(u)du = 1/n
n∑
i=1

∫ i

i−1

g(u/n)f(u)du.

Letting t = u− i+ 1, we get∫ i

i−1

g(u/n)f(u)du =

∫ 1

0

g((t+ i− 1)/n)f(t+ i− 1)dt =

∫ 1

0

g((t+ i− 1)/n)f(t)dt.

Consequently,∫ 1

0

g(x)f(nx)dx =

∫ 1

0

[
n∑
i=1

1/ng((t+ i− 1)/n)]f(t)dt =

∫ 1

0

hn(t)dt(∗)

where hn(t) = [
∑n

i=1 1/ng((t + i − 1)/n)]f(t) . Clearly, hn is a continuous function
defined on [0, 1]. In addition, note that if |g(x)| ≤ K and |f(x)| ≤ K hold for each
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x ∈ [0, 1], then hn(t) ≤ K2 for all t ∈ [0, 1].i.e. the sequence (hn) is uniformly bounded
on [0, 1]. Now, note that if 0 ≤ t ≤ 1 then (i − 1)/n ≤ (t + i − 1)/n ≤ i/n.Thus, if mn

i

and Mn
i denote the minimum and maximum values of g, respectively, on the interval

[(i− 1)/n, i/n], then mn
i ≤ g((t+ i− 1)/n) ≤Mn

i holds for each 0 ≤ t ≤ 1. Let
Rn =

∑n
i=1 1/nmn

i and Sn =
∑n

i=1 1/nMn
i ,

and note that Rn and Sn are two Riemann sums(the smallest and the largest ones)
for the function g corresponding to the partition {0, 1/n, 2/n, ..., (n − 1)/n, 1}. Hence,

limn→∞Rn = limn→∞ Sn =
∫ 1

0
g(x)dx.From,

|hn(t)−Rn.f(t)| = |[
n∑
i=1

1/ng((t+ i− 1)/n)]f(t)−Rn.f(t)|

= |([
n∑
i=1

1/ng((t+ i− 1)/n)]−Rn).f(t)| ≤ (Sn −Rn)|f(t)|,

we see that limn→∞ hn(t) = f(t)
∫ 1

0
g(x)dx and in fact hn converges uniformly. Now, by

(*) and the Lebesgue Dominated Convergence Theorem we obtain

lim
n→∞

∫ 1

0

g(x)f(nx)dx = lim
n→∞

∫ 1

0

hn(t)dt

=

∫ 1

0

[ lim
n→∞

hn(t)]dt =

∫ 1

0

[f(t)

∫ 1

0

g(x)dx]dt = (

∫ 1

0

g(x)dx)(

∫ 1

0

f(x)dx).

PROBLEM 34. Show that
∫∞

0
sin2(x)
x2 dx = π

2
.

SOLUTION.Consider the function f(x) = 1, ifx = 0, f(x) = sin2(x)/x2, if0 < x ≤
1, f(x) = 1/x2, ifx > 1.Note that f is Lebesgue integrable over [0,∞).By the inequality

0 ≤ sin2(x)
x2 ≤ f(x), we see that the function sin2(x)

x2 is Lebesgue integrable over [0,∞).
Now for each r, ε > 0, we have∫ r

ε

sin2(x)

x2
dx = −

∫ r

ε

sin2(x)d(
1

x
)

=
−sin2(x)

x
|rε +

∫ r

ε

2sinx
cosx

x
dx

=
sin2ε

ε
− sin2r

r
+

∫ 2r

2ε

sinx

x
dx.

Thus, we see that∫ ∞
0

sin(x)

x2
dx = lim

r→∞
ε→0+

∫ r

ε

sin2(x)

x2
dx =

∫ ∞
0

sin(x)

x
dx =

π

2
.
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PROBLEM 35.
a.)Let (fn) be a sequence of measurable functions and let f : X → R. Assume that

lim
n→∞

µ({x : |fn(x)− f(x)| ≥ ε}) = 0(∗)

holds for every ε > 0. Show that f is measurable.
b.) Assume that (fn) ⊆ M satisfies fn ↑ and fn →µ f(i.e. fn goes to f in measure).
Show that

lim
n→∞

∫
fndµ =

∫
fdµ.

c.) Assume that (fn) ⊆ M satisfies fn ≥ 0 a.e. and fn →µ f(i.e. fn goes to f in
measure). Show that f ≥ 0 a.e.

SOLUTION.
a.)We will show that there is a subsequence (fnk) of (fn) that converges to f a.e. as the
given condition (∗) is equivalent to the condition that fn → f in measure.
Pick a sequence (kn) of strictly increasing positive integers such that µ({x : |fn(x) −
f(x)| ≥ 1/n}) < 2−n for all k > kn. Set En := {x : |fn(x)− f(x)| ≥ 1/n} for each n and
let E := ∩∞n=1 ∪∞k=n Ek.Then,

µ(E) ≤ µ(∪∞k=nEk) ≤
∞∑
k=n

µ(Ek) ≤ 21−n

holds for all n, and this shows that µ(E) = 0. Also, if x is not in E, then there exists some
n such that x is not in ∪∞k=nEk, and so |fkm− f | ≤ 1/m holds for each m ≥ n.Therefore,
lim fkn(x) = f(x) for each x ∈ Ec, and so fkn → f a.e. holds. Thus, f is measurable as
limit of a sequence of measurable functions is itself measurable.
b.)By part a.) there exists a subsequence fnk which converges to f a.e. Since fn ↑, it
easily follows that fn ↑ f .Now apply the Monotone Convergence Theorem to deduce the
result.
c.) Again by part a.) there exists a subsequence fnk which converges to f a.e. Thus, we
must have f ≥ 0 a.e.

PROBLEM 36. Let g be an integrable function and let (fn) be a sequence of integrable
functions such that |fn| ≤ g a.e. holds for all n. Suppose that fn →µ f (i.e.fn goes to f
in measure), then show that f is an integrable function and lim

∫
|fn − f |dµ = 0.

SOLUTION. By the above exercise we know that if fn converges to f in measure then
there exists a subsequence fnk of fn which converges to f a.e.Thus, |f | ≤ g a.e. And
application of the Lebesgue Dminated Convergence Theorem gives that f is integrable.
Now, assume on the contrary that lim

∫
|fn − f |dµ 6= 0.Thus, assume that for some

ε > 0 there exists a subsequence (gn) of (fn) such that
∫
|gn − f |dµ ≥ ε. But we know

that there exists a subsequence (hn) of (gn) with hn → f a.e. Now Lebesgue Dominated
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Convergence Theorem implies ) < ε ≤
∫
|hn − f |dµ → 0, which is a contradiction.

Therefore, we must have lim
∫
|fn − f |dµ = 0.

PROBLEM 37. Let f be a.e. positive measurable function and let

mi = µ({x ∈ X : 2i−1 < f(x) ≤ 2i})

for each integer i. Show that f is integrable if and only if
∑∞
−∞ 2imi <∞.

SOLUTION. Let Ei := {x ∈ X : 2i−1 < f(x) ≤ 2i}, i = 0,+−1,+−2, ...Set φn =∑n
i=−n 2i1Ei for n = 1, 2, 3, ... Then there exists some function g with φn ↑ g a.e.Clearly,

g is a measurable function and 0 ≤ f ≤ g a.e.
Assume that f is integrable. Then, each φn is a step function, and by φn ≤ 2f , it follows
that

∞∑
i=−∞

2imi = lim
n→∞

∫
φndµ ≤ 2

∫
fdµ <∞

On the other hand, if
∑∞
−∞ 2imi < ∞, then each φn is a step function, and so g is

integrable. Since 0 ≤ f ≤ g, f it follows that f is also integrable.

PROBLEM 38.
a.) Let f ∈ L1(µ)(i.e. f is integrable) and let ε > 0. Show that

µ({x ∈ X : |f(x)| ≥ ε}) ≤ ε−1

∫
|f |dµ

b.) If fn → f in L1(µ) then show that fn → f in measure.

SOLUTION.
a.) Consider the measurable set E = {x ∈ X : |f(x)| ≥ ε}.Then,the follwing estimate
gives the result. ∫

|f |dµ ≥
∫
|f |1Edµ ≥

∫
ε1Edµ = εµ(E).

b.) From part a.) we have the follwing inequality,

µ({x ∈ X : |fn(x)− f(x)| ≥ ε}) ≤ ε−1

∫
|fn − f |dµ.

But if fn → f in L1(µ) holds then the right hand side of this inequality goes to 0 and
that shows that fn → f in measure.

PROBLEM 39. Suppose f is integrable on a set A. Then, show that given ε > 0 there
exists a δ > 0 such that

|
∫
E

f(x)dµ| < ε

for every measurable set E ⊂ A of measure less than δ.

19



SOLUTION. There are various ways to do this. Here is our proof :
The result is obvious when f is bounded, since then

|
∫
E

f(x)dx| ≤
∫
E

|f |dµ ≤ (supx∈E|f(x)|)µ(E)

In the general case, let

An := {x ∈ A : n ≤ f(x) ≤ n+ 1}

BN := ∪Nn=0An

CN := A−BN

Then,
∫
A
|f(x)|dx =

∑∞
n=0

∫
An
|f(x)|dµ.Let N be such that

∞∑
n=N+1

∫
An

|f(x)|dµ =

∫
CN

|f(x)|dµ < ε

2
.

and let 0 < δ < ε
2(N+1)

. Then µ(E) < δ implies

|
∫
E

f(x)dµ| =
∫
E

|f(x)|dµ =

∫
E∩BN

|f(x)|dµ+

∫
E∩CN

|f(x)|dµ

≤ (N + 1)µ(E) +

∫
CN

|f(x)dµ <
ε

2
+
ε

2
= ε.

PROBLEM 40. Suppose f is integrable function on R(⇔ f ∈ L1(R)).Then, show
that

lim
t→0

∫
|f(t+ x)− f(x)|dx = 0.

SOLUTION. Note that the result is immediate when f is a step function. Now let f
be an arbitrary integrable function and let ε > 0. If f ≈ f1 + f2 + f3 + ...(approximate
f by a step function which can be done as step functions are dense in L1), then there
exists n0 ∈ N such that

∞∑
n=n0+1

∫
|fn|dx <

ε

3
.

We have ∫
|f(x+ t)− f(x)|dx ≤

∫
|
n0∑
n=1

fn(x+ t)−
n0∑
n=1

fn(x)|dx

+
∞∑

n=n0+1

∫
|fn(x+ t)|dx+

∞∑
n=n0+1

∫
|fn(x)|dx
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=

∫
|
n0∑
n=1

fn(x+ t)−
n0∑
n=1

fn(x)|dx

+2
∞∑

n=n0+1

∫
|fn(x)|dx

<

∫
|
n0∑
n=1

fn(x+ t)−
n0∑
n=1

fn(x)|dx+ 2
ε

3

Since
∑n0

n=1 fn(x) is a step function, we have

lim
t→0

∫
|
n0∑
n=1

fn(x+ t)−
n0∑
n=1

fn(x)|dx = 0.

Consequently,
∫
|f(t+ x)− f(x)|dx < ε for sufficiently small t.This proves the result.

PROBLEM 41. Show that every extended real valued measurable function f is the
limit of a sequence (fn) of simple functions.

SOLUTION. Suppose first that f ≥ 0. For every n = 1, 2, 3, ..., and for every x ∈ X,
write
fn(x) = (i− 1)/2 if (i− 1)/2 ≤ f(x) < i/2, for i = 1, 2, ...2nn
fn(x) = n if f(x) ≥ n.
Clearly fn is a nonnegative simple function, and the sequence (fn) is increasing. If
f(x) <∞, then, for some n,

0 ≤ f(x)− fn(x) ≤ 2−n;

if f(x) = ∞, then fn(x) = n for every n.Recalling that the difference of two simple
functions is a simple function, application of the procedure above to f+ and f− separately
proves the result for arbitrary f .

PROBLEM 42. Suppose µ is a probability measure on X i.e.µ(X) = 1.LetA1, A2, A3, ... ∈
U be sets in the σ−algebra U such that

∑n
i=1 µ(Ai) > n− 1. Show that µ(∩nk=1Ak) > 0.

SOLUTION. Since µ(Aci) = 1− µ(Ai), we have
∑n

i=1 µ(Aci) = n−
∑n

i=1 µ(Ai) < 1.By
the semi-additivity of the measure we have,

µ(
n⋃
i=1

Aci) ≤
n∑
i=1

µ(Aci) < 1.

Therefore,

µ(
n⋂
i=1

Ai) = 1− µ((
n⋂
i=1

Ai)
c) = 1− µ(

n⋃
i=1

Aci) > 0.
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PROBLEM 43. Suppose f is an integrable function on X = Rp.
i) Show that ∀ε > 0, there exists a measurable set with finite measure such that f is
bounded on A and

∫
(X−A)

|f |dµ < ε

ii) From this deduce that

lim
µ(E)→0

∫
E

|f |dµ = 0.

SOLUTION.
i)We can assume that f ≥ 0. Consider the following sets

A0 := {x : f(x) = 0}, An := {x : 1/n ≤ f(x) ≤ n}, A∞ := {x : f(x) =∞}.

Clearly, A1 ⊆ A2 ⊆ A3 ⊆ ... and also
⋂∞
n=1(X − An) = A0 ∪ A∞. Note that µ(A∞) = 0

as f is integragle. Thus, we have

lim
n→∞

∫
(X−An)

fdµ =

∫
A0

fdµ+

∫
A∞

fdµ = 0

Therefore ∃n0 such that letting A = An0 ,
∫

(X−A)
fdµ < ε. Furthermore, f is bounded

on A by n0 and also A has finite measure as 1
n0
µ(A) ≤

∫
A
fdµ <∞

ii) Let A be as in part i) with ε
2

instead of ε. Let M = supA f . Then if E is a measurable
set and µ(E) < ε

2M
we have∫

E

fdµ ≤
∫

(X−A)

fdµ+

∫
(E∩A)

fdµ

≤
∫

(X−A)

fdµ+

∫
(E∩A)

fdµ <
ε

2
+Mµ(E) <

ε

2
+M

ε

2
= ε.

PROBLEM 44.
i) Show that an algebra A is a σ−algebra if and only if it is closed under countable
increasing unions(i.e. If (Ej)

∞
j=1 ⊂ A and E1 ⊂ E2 ⊂ E3 ⊂ ..., then

⋃∞
j=1 Ej ∈ A.)

ii) Suppose µ1, µ2, µ3, ... are measures on (X,M) and a1, a2, a3, ... ∈ [0,∞). Show that∑n
1 ajµj is a measure on (X,M).

SOLUTION.
i) We just need to show that A is closed under all countable unions since the other
direction is obvious. For that, let (Ej) be any sequence of sets in A. Let F1 = E1 and
Fn = ∪nj=1Ej for n > 1. Since A is an algebra, Fn ∈ A. Note that Fn ⊆ Fn+1, so

∞⋃
j=1

Ej =
∞⋃
j=1

Fj ∈ A.

ii) Let m(E) =
∑n

1 ajµj(E). It is clear that m(∅) = 0 as m(∅) =
∑n

1 ajµj(∅) = 0.It
is also obvious that m(E) ≥ 0.For the countable additivity, recall the fact that series
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of nonnegative terms can be added and multiplied termwise and rearrenged arbitrarily
without changing the sum. Thus, m is a measure.

PROBLEM 45.
i) Let (X,M, µ) be a measure space and E,F ∈M. Show that

µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ).

ii) Given a measure space (X,M, µ) and E ∈ M , define µE(F ) = µ(A ∩ E). Show that
µE is a measure.

SOLUTION.
i) Write the set as a disjoint union of two sets as follows E = (E − F ) ∪ (E ∩ F ).Now
write F as the disjoint union F = (F − E) ∪ (E ∩ F ) and E ∪ F as the disjoint union
(E − F ) ∪ (F − E) ∪ (E ∩ F ). Then we have,

µ(E ∪ F ) + µ(E ∩ F ) = µ(E − F ) + µ(F − E) + 2µ(E ∩ F )

= µ(E − F ) + µ(E ∩ F ) + µ(F − E) + µ(E ∩ F )

= µ(E) + µ(F )

ii) Clearly, µE(A) ≥ 0 and µE(∅) = 0. Countable additivity is also very easy to verify.
Suppose An ∩ Am = ∅ when m 6= n, then

µE(
∞⋃
n=1

An) = µ(E ∩
∞⋃
n=1

An) =
∞∑
n=1

µ(E ∩ An) =
∞∑
n=1

µE(An).

PROBLEM 46. We know that if µ is a measure(in the sense that it is count-
ably additive) then it is continuous from below. {i.e. If A1 ⊆ A2 ⊆ A3 ⊆ ...then
µ(
⋃
Ai) = limµ(Ai)}.Similarly, we know that if µ(X) is finite then µ is continuous

from above.{i.e. If ... ⊆ A3 ⊆ A2 ⊆ A1 then limn→∞ µ(An) = µ(
⋂
An).}. Show that

a finitely additive measure is a measure if and only if it is continuous from below.Now
suppose that µ(X) < ∞. Show that µ is a measure if and only if it is continuous from
above.Give a counterexample to show that if µ is a measure with µ(X) = ∞ then it is
not necessarily continuous from above.

SOLUTION. Suppose that µ is a finitely additive and continuous from below. Let
(Ej)

∞
j=1 be a disjoint sequence of measurable sets. Then for each n let Fn = ∪nj=1Ej, so

that we have F1 ⊆ F2 ⊆ .... By finite additivity, µ(Fn) =
∑n

j=1 µ(Ej), and by continuity
from below,

µ(
∞⋃
j=1

Ej) = µ(
∞⋃
n=1

Fn) = lim
n→∞

µ(Fn) = lim
n∑
j=1

µ(Ej) =
∞∑
j=1

µ(Ej).
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This clearly shows that µ is countably additive, and hence is a measure.
We will try to use previous part. Suppose µ(X) < ∞ and µ is continuous from above.
We will show that under these conditions µ is also continuous from below which, together
with previous part, will prove that µ is countably additive and hence is a measure. Take
a decresing sequence of measurable sets E1 ⊆ E2 ⊆ ..., then ... ⊆ Ec

2 ⊆ Ec
1, and so,

µ(
∞⋃
j=1

Ej) = µ(X −
∞⋂
j=1

Ec
j ) = µ(X)− µ(

∞⋂
j=1

Ec
j )

= µ(X)− lim
j→∞

µ(Ec
j ) = lim

j→∞
[µ(X)− µ(Ec

j )] = lim
j→∞

µ(Ej).

Hence µ is continuous from below and by the previous part it is therefore countaly
additive.

PROBLEM 47. Let µ∗ be an outer measure on X and let (Aj)
∞
j=1 be a sequence of

disjoint µ∗−measurable sets(in the sense of Carethedory). Show that µ∗(E∩(
⋃∞

1 Aj)) =∑∞
1 µ∗(E ∩ Aj) for any E ⊂ X.

SOLUTION. First we prove that for each finite n,

µ∗(E ∩
n⋃
j=1

Aj) =
n∑
j=1

µ∗(E ∩ Aj)

For this we use induction on n. This statement is obvious when n = 1. Suppose that it
is true for n = k.Let n = k + 1 and note that

µ∗(E ∩
k+1⋃
j=1

Aj) ≥ µ∗
(
(E ∩

k+1⋃
j=1

Aj) ∩ Ak+1

)
+ µ∗

(
(E ∩

k+1⋃
j=1

Aj) ∩ Ack+1

)
.

= µ∗(E ∩ Ak+1) + µ∗(E ∩
k⋃
j=1

Aj) = µ∗(E ∩ Ak+1) +
k∑
j=1

µ∗(E ∩ Aj)

By the monotonicity of the outer measure , we then have,

µ∗(E ∩
∞⋃
j=1

Aj) ≥ µ∗(E ∩
n⋃
j=1

Aj) =
n∑
j=1

µ∗(E ∩ Aj).

Since n is arbitrary, it follows that

µ∗(E ∩
∞⋃
j=1

Aj) ≥
∞∑
j=1

µ∗(E ∩ Aj)

The other inequality follows from the countable subadditivity.Hence equality holds.
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PROBLEM 48. Let f : Rn → R be a Lebesgue measurable function such that

m({x : |f(x)| > t}) ≤ c

t2
, t > 0.

Prove that there exists a constant C1 such that for any Borel set E ⊂ Rn of finite and
positive measure ∫

E

|f(x)|dx ≤ C1

√
m(E).

SOLUTION. ∫
E

|f |dm =

∫ ∞
0

m({x : |f | > t} ∩ E)dt

=

∫ √ c
|E|

0

m({x : |f | > t} ∩ E)dt+

∫ ∞
√

c
|E|

m({x : |f | > t} ∩ E)dt

≤ |E|
√

c

|E|
+

∫ ∞
√

c
|E|

c

t2
dt =

√
c
√
|E|+

[−c
t

]∞√
c
|E|

=
√
c
√
|E|+ c√

c
|E|

= 2
√
c
√
|E| = C1

√
|E|.

Thus C1 = 2
√
c and therefore the assertion is proved.

PROBLEM 49. Let B(m, 1) be m−dimensional ball of radius 1 centered at the origin
in Rm.
a.) Show that there exists a function f : R→ [0, 1] such that

m(B(n+ 1, 1)) = m(B(n, 1))

∫
[f(t)]ndt.

Here m denotes the Lebesgue measure.
b.) Show that

∫
[f(t)]ndt→ 0 as n→∞.

c.) Show that for any positive number A, Anm(B(n, 1))→ 0 as n→∞.

SOLUTION.
a.) Let B(n + 1, r) =

{
x ∈ Rn : x2

1 + ...x2
n+1 = r

}
.Integrate over t = xn+1 to determine

the volume of B(n+ 1, 1). Then we get,

m(B(n+ 1, 1)) =

∫ 1

−1

m(B(n,
√

1− t2))dt

= 2

∫ 1

−1

m(B(n, 1))
(√

1− t2
)n
dt = m(B(n, 1))

∫ ∞
−∞

f(t)dt

where f(t) = 1[−1,1]

√
1− t2, here 1A represents the characteristic function of the set A.

The first equality follows from the Fubini′s theorem, and the second equality follows

25



from the fact that m(B(n, r)) = rnm(B(n, 1)). This fcat follows from a linear change of
variables.
b.) Note that [f(t)]n → 0 pointwise if t 6= 0 and define fn := fn, then f1 ≥ f2 ≥
... ≥ 0, f1 is integrable and fn → 0 almost everywhere, so by the first question we have∫

[f(t)]ndt→ 0.
c.)

Anm(B(n, 1)) = Anm(B(n− 1, 1)

∫
[f(t)n−1dt

= Anm(B(n− 2, 1))

∫
[f(t)]n−2dt

∫
[f(t)]n−1dt

= ... = Anm(B(0, 1))

∫
[f(t)]0dt...

∫
[f(t)]n−1dt(

A

∫
[f(t)]0dt

)
...

(
A

∫
[f(t)]n−1dt

)
.

Here we used the fact that m(B(0, 1)) = 1. By part b.), for k sufficiently large,
A
∫

[f(t)]kdt < s < 1 for some fixes s with 0 ≤ s < 1. But this shows Anm(B(n, 1))↘ 0.

PROBLEM 50. Let f be an integrable function. Show that
i) µ(

{
x : |f(x)| ≥ a

}
) ≤ 1

a

∫
|f |dµ.

ii) µ(
{
x : |f(x)| ≥ a

}
) = o( 1

a
) as a→∞.

SOLUTION.
i)

µ(
{
x : |f(x)| ≥ a

}
) =

∫{
x:|f(x)|≥a

} dµ ≤ ∫{
x:|f(x)|≥a

} |f |
a
dµ ≤ 1

a

∫
|f |dµ.

ii) From part i) if a→∞ then µ(
{
x : |f(x)| ≥ a

}
)→ 0. This clearly proves the result.

PROBLEM 51. Let
(
X,M

)
be a measure space. If f ∈ L+, let λ(E) =

∫
E
fdµ, for

E ∈M . Show that λ is a measure on M , and for any g ∈ L+,
∫
gdλ =

∫
fgdµ.

SOLUTION. Since f ≥ 0, λ(E) =
∫
E
fdµ ≥ 0, and λ(∅) = 0. If A is a disjoint union

of (An)∞n=1, then

λ(A) =

∫
A

fdµ =

∫
1A.fdµ =

∫ ∑
n

1An .fdµ =
∑
n

∫
1An .fdµ =

∑
n

∫
An

fdµ =
∑
n

λ(An).

Therefore, λ is a measure on M .
If g ∈ L+ is simple, and g =

∑n
1 ak.1Ek , then∫

gdλ =
n∑
1

ak.λ(Ek) =
n∑
1

ak.

∫
Ek

fdµ =

∫ n∑
1

ak.1Ek .fdµ =

∫
gfdµ.
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If g ∈ L+ is arbitrary, we can find a sequence (φn)∞1 of nonnegative simple functions that
increases pointwise to the function g. Then the sequence

(
φn.f

)
increases pointwise to

the function g.f . Thus, by the Monotone Convergence Theorem,∫
gdλ = lim

n→∞

∫
φndλ = lim

n→∞

∫
φnfdµ =

∫
gfdµ.

PROBLEM 52. Let f(x) = x−1/2 if 0 < x < 1, f(x) = 0 otherwise. Let (rn)∞1 be an
enumeration of rationals, and set g(x) =

∑∞
1 2−nf(x− rn).Show that

a.) g ∈ L1(m) and in particular g <∞ a.e.
(

Here m is the Lebesgue measure
)
.

b.) g2 <∞ a.e. but g2 is not integrable on any interval.
c.) g is discontinuous at every point and unbounded on every interval, and it remains
so after any modification on a Lebesgue null set.

SOLUTION.
a.) Let fn := 1[1/n,1]f , then fn ≥ 0 for all n and fn ↗ f pintwise. We have,∫

fndm =

∫
1/n,1]

fdm =

∫ 1

1/n

x−1/2dx = 2− 2.(
1

n
)1/2.

Thus, since fn ↗ f pointwise∫
fdm = lim

n→∞

∫
fndm = lim

n→∞
2− 2.(

1

n
)1/2 = 2.

Therefore, we have∫
|g|dm ≤

∞∑
n=1

2−n
∫
|f(x− rn)|dm =

∞∑
n=1

2−n.2 = 2 <∞.

and this clearly shows that g ∈ L1(m), and g <∞ a.e.
b.) Since g < ∞ a.e., it is also true that g2 < ∞ a.e. Fix any interval

(
a, b
)

for some
a < b, there is rn ∈

(
a, b
)
∩ Q since Q is dense in R. There exists M ∈ N such that

when m ≥M , rn + 1
m
∈ (a, b). Then

1(a,b)g
2(x) ≥ 2−2n1[rn+ 1

m
,rn+ 1

M
]f(x− rn)2

for m ≥M . Therefore,∫
(a,b)

g2dm ≥ 2−2n

∫
[rn+ 1

m
,rn+ 1

M
]

f(x− rn)2dm

= 2−2n

∫ rn+ 1
M

]

[rn+ 1
m

(x− rn)−1dm = 2−2n

(
ln(m)− ln(M)

)
,
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for all m ≥ M , so
∫
a,b)

g2dm =
∫ b
a
g2dm can only be ∞, and this clearly shows that g2

can not be integrable.
c.) If g = h a.e., we also have

∫
(a,b)
|h|2dm =∞ for any interval (a, b). Thus, h can not

be bounded on (a, b). Moreover, h is discontinuous at any point x, since otherwise h
would be bounded on some interval containing x.

PROBLEM 53. Compute the following limits and justify the calculations:
a.) limn→∞

∫∞
0

(
1 + x

n

)−n
sin(x

n
)dx ;

b.) limn→∞
∫ 1

0

(
1 + nx2

)(
1 + x2

)−n
dx;

c.) limn→∞
∫∞

0
nsin(x

n
)
[
x(1 + x2)]−1dx;

d.) limn→∞
∫∞
a
n(1 + n2x2)−1dx , (a ∈ R)

SOLUTION.
a.) For n ≥ 2 we have ∣∣(1 +

x

n

)−n
sin(

x

n
)
∣∣ ≤ (1 +

x

2

)−2
.

Note also that the function
(
1 + x

2

)−2
is integrable over [0,∞). Thus, by the Dominated

Convergence Theorem ,we have

lim
n→∞

∫ ∞
0

(
1 +

x

n

)−n
sin(

x

n
)dx =

∫ ∞
0

lim
n→∞

(
1 +

x

n

)−n
sin(

x

n
)dx = 0.

b.)
∣∣(1 + nx2

)(
1 + x2

)−n∣∣ ≤ 1, and
∫ 1

0
1dx = 1. Thus by the Dominated Convergence

Theorem, we have

lim
n→∞

∫ 1

0

(
1 + nx2

)(
1 + x2

)−n
dx =

∫ 1

0

lim
n→∞

(
1 + nx2

)(
1 + x2

)−n
dx = 0.

c.)
∣∣nsin(x

n
)
[
x(1 + x2)]−1

∣∣ ≤ (1 + x2)−1 and note that (1 + x2)−1 is integrable over
[0,∞).Hence, again by the Dominated Convergence Theorem, we have,

lim
n→∞

∫ ∞
0

nsin(
x

n
)
[
x(1+x2)]−1dx =

∫ ∞
0

lim
n→∞

nsin(
x

n
)
[
x(1+x2)]−1dx =

∫ ∞
0

(1+x2)−1 =
π

2
.

d.) limn→∞
∫∞
a
n(1 + n2x2)−1dx = limn→∞

∫∞
na

(1 + y2)−1dy = limn→∞ arctan(y)|∞na = 0
if a > 0; = π

2
if a = 0; = π if a < 0.

PROBLEM 54. Suppose fn and f are measurable complex-valued functions and φ :
C → C.
a.) If φ is continuous and fn → f a.e., then show that φ ◦ fn → φ ◦ f a.e.
b.) Show that if φ is uniformly continuous and fn → f uniformly, almost uniformly, or
in measure, then φ◦fn → φ◦f , uniformly, almost uniformly, or in measure, respectively.
c.) Give counterexamples when the continuity assumptions on φ are not satisfied.

SOLUTION.
a.) Since φ is continuous by assumption, fn → f implies that φ ◦ fn → φ ◦ f , and
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so {x : φ ◦ fn 9 φ ◦ f} ⊂ {x : fn 9 f}. Thus, µ({x : φ ◦ fn 9 φ ◦ f}) = 0 as
µ({x : fn 9 f}) = 0.Therefore, φ ◦ fn → φ ◦ f a.e.
b.) Since φ is uniformly continuous, for any ε > 0, there exists a δ(ε) > 0 such that
|x − y| < δ(ε) implies that |φ(x) − φ(y)| < ε. Now, if fn → f uniformly, ∀ε > 0, there
is M ∈ N such that when n ≥ M , for all x ∈ X, |fn(x) − f(x)| < δ(ε), and so that
|φ ◦ fn(x)− φ ◦ f | < ε. But this shows that φ ◦ fn → φ ◦ f , uniformly.
If fn → f almost uniformly, then for any ε1, ε2 > 0, there is a set E ∈ F (σ − algebra)
and a natural number M ∈ N , such that µ(E) < ε1, and when nj ≥ M for x ∈
X − E, |fn(x) − f(x)| < δ(ε2), and so |φ ◦ fn − φ ◦ f | < ε2. This clearly shows that
φ ◦ fn → φ ◦ f almost uniformly.
If fn → f in measure, then ∀ε > 0, µ({x : |fn(x)− f(x)| > δ(ε)})→). Since

{x : |φ ◦ fn − φ ◦ f | > ε} ⊂ {x : |fn − f | > δ(ε)},

we have µ({x : |φ◦fn−φ◦f | > ε})→ 0. But this means that φ◦fn → φ◦f , in measure.
c.) A counterexample for a.) is fn(x) = 1

n
, f(x) = 0, and φ = 1{0}.

A counterexample for b.) is X = R, fn(x) = x+ 1
n
, f(x) = x and φ(x) = x2.

PROBLEM 55. Suppose fn → f almost uniformly, then show that fn → f a.e. and
in measure.

SOLUTION.First let us recall what it means to converge almost uniformly : It means,
for all ε1, ε2 > 0, there is a set E such that µ(E) < ε1 and x ∈ (X − E) implies
|fn(x)− f(x)| < ε2.
Since fn → f almost uniformly, for any n ∈ N , there is En ∈ M(σ-algebra such that
µ(En) < 1

n
and fn → f on Ec

N . Let E =
⋂∞

1 En, then µ(E) = 0 and fn → f on⋃∞
1 Ec

n = Ec. Thus, fn → f a.e.
Since fn → f almost uniformly, for every ε1, ε2 > 0, there is E ∈ M and n1 ∈ N
such that µ(E) < ε2 and when n > n1, |fn(x) − f(x)| < ε1 for x is not in E, and so
µ({x : |fn(x)− f(x)| ≥ ε1}) ≤ µ(E) < ε2. Thus,

µ({x : |fn(x)− f(x)| ≥ ε1})→ 0.

Therefore, fn → f in measure as ε1 and ε2 are arbitrary.

PROBLEM 56. Show that if f : [a, b] → C is Lebesgue measurable and ε > 0, then
there is a set E ⊂ [a, b] such that m(Ec) < ε and f |E is continuous. Moreover, E may
be taken to be compact.

SOLUTION. Since
⋂∞
n=1{x : |f(x)| > n} = ∅, there is M ∈ N such that m({x :

|f(x)| > M}) < ε
2
. Let E1 = {x : |f(x)| ≤ M}, and define h(x) = 1E1f(x). Now

h ∈ L1[a, b], so we can find a subsequence of a sequence of continuous functions (gn)
which tends to f a.e.Without loss of generality we assume that gn → h a.e. Applying
Egoroff’s Theorem, we have E2 ∈ M such that m(Ec

2) < ε
2

and gn → h uniformly on
E2. Then, we have that h is continuous on E2 and so f is continuous on E1 ∩ E2 for f
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differs from h only on E1. Now, m((E1 ∩ E2)c) = m(Ec
1 ∪ Ec

2) < ε, there is an open set
O containing Ec

1 ∪ Ec
2 and m(O) < ε. Let E = Oc, then E is compact, m(Ec) < ε and

E ⊂ E! ∩ E2, so f is continuous on E.

PROBLEM 57. A measure µ is called semi-finite if every set of infinite measure
contains a subset of finite, nonzero measure. Show that every σ−finite measure is semi-
finite.

SOLUTION. Since µ is σ−finite, we know that

X =
∞⋃
j=1

Ej, µ(Ej) <∞.

Without loss of generality we may assume that Ej are disjoint. Let A be an arbitrary
set with µ(A) =∞. Then,

µ(A) =
∞∑
j=1

µ(A ∩ Ej).

Each A∩Ej has finite measure as it is a subset of Ej. Since the sum is∞, at least some
of the sets A ∩ Ej must have nonzero measure(actually, infinitely many). Pick any of
them.

PROBLEM 58. Let µ be the counting measure on N . Prove that fn → f in measure
if and only if fn → f uniformly.

SOLUTION. Assume fn → f in measure. This means that for any ε > 0
µ({x : |fn(x) − f(x)| > ε}) → 0 as n → ∞. Since µ only takes integer values, this
is equivalent to : ∃N so that µ({x : |fn(x) − f(x)| > ε}) = 0 for n > N. This says,
|fn(x)−f(x)| ≤ ε for n > N and for all x. But this says fn → f uniformly. The converse
is obvious.

PROBLEM 59. Prove that for a > 0,∫ ∞
−∞

e−x
2

cos(ax)dx =
√
πe−

a2

4 .

SOLUTION. Define,

fn(x) = e−x
2

n∑
j=0

(−1)j
(ax)2j

(2j)!
,

and

g(x) = e−x
2
∞∑
j=0

(−1)j
(ax)2j

(2j)!
= e−x

2

cosh(ax) = e−x
2 eax + e−ax

2
.
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Then, g ∈ L1, and |fn(x)| ≤ g(x). Thus, we can use Dominated Convergence Theorem
and integrate the series for f term by term. A simple calculation yields,∫ ∞

−∞
e−x

2 (ax)2n

(2n)!
dx = a2n

√
π

4nn!
.

Thus, ∫ ∞
−∞

e−x
2

cos(ax)dx =
∞∑
n=0

(−1)na2n

√
π

4nn!
=
√
π

∞∑
n=0

(−a2/4)n

n!
=
√
πe−a

2/4.

PROBLEM 60. Let (qn) be an enumeration of rationals in [0, 1]. Define the function
f on [0, 1] by,

f(x) =
∑

n,so,qn<x

2−n.

(a.) Where is this function continuous/discontinuous?

(b.) Is this function Riemann integrable?

(c.) Is this function Lebesgue integrable?

SOLUTION.

(a.) If x is rational, then x = qn for some n. and f(x+) − f(x−) = 2−n, so f is not
continuous at x.
Let x be irrational. Claim: f is continuous at x. To prove the claim fix ε > 0.
Choose N so large that

∞∑
n=N

2−n < ε.

Now, choose δ > 0 so small that the interval (x− δ, x+ δ) does not contain any of
the qn with n < N. Then for y ∈ (x− δ, x+ δ),

|f(x)− f(y)| <
∑
n>N

2−n < ε.

(b.) The answer is yes. There is a theorem saying, if a function is bounded on a
bounded interval and it has at most countably many points of discontinuity, then
it is Riemann integrable. Our function satisfies the conditions so it is Riemann
integrable.
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(c.) Yes. It is Lebesgue integrable. For this we can use a theorem which says if f is
properly Riemann integrable, then it is Lebesgue integrable.
Or we can try to do it directly. The partial sums

fN(x) =
∑

n≤N,qn<x

2−n

are non-negative, increasing and bounded above. So either by the Monotone Con-
vergence Theorem or by the Dominated Convergence Theorem f is Lebesgue in-
tegrable.

PROBLEM 61. If f and g are two continuous functions on a common open set in Rn

that agree everywhere on the complement of a set of zero Lebesgue measure,then, show
that in fact f and g agree everywhere.

SOLUTION. Let f and g be two continuous functions such that f(x) = g(x), for
all x ∈ Ac and m(A) = 0. Consider any point a ∈ A. Consider also the open ball
B(a, r) = {y : |y−a| < r}. Since m(A) = 0 and m(B(a, r)) > 0 it is not possible to have
B(a, r) ⊂ A for any r > 0. Therefore, for all r > 0, B(a, r) contains points in Ac. Thus,
there exists a sequence of points each lying in Ac and converging to a.i.e. There exists
(an)∞n=1 such that an ∈ Ac for all n and an → a. But, then limn→∞ f(an) = limn→∞ g(an)
since f(an) = g(an) for all n. Since f and g are continuous on Ac the above equality
gives,

f( lim
n→∞

an) = g( lim
n→∞

an)

⇒ f(a) = f( lim
n→∞

an) = g( lim
n→∞

an) = g(a).

Since, a ∈ A is arbitrary we have g(a) = f(a) for all a ∈ A. Since also f(b) = g(b) for
all b ∈ Ac we have f(x) = g(x) for any x ∈ Rn.
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