
Perturbation theory and
atomic resonances

since Schrödinger’s time
Evans Harrell
Georgia Tech

www.math.gatech.edu/~harrell

                Simonfest
           Cal Tech
                 28 March 2006
                             (as rescheduled)
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Fritz!



Peter in healthier times.  Get well soon!



An article that synthesized much that went before and
inspired much afterwards:
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Physical mechanisms for
quantum resonance

• Shape resonance (Alpha emission)/Stark
effect - confinement of a particle by a
barrier, through which tunneling occurs.

• Dissolving of embedded eigenvalues by a
small perturbation.  Auger effect.



“The goals of the time-dependent
theory are much more ambitious
than merely proving certain
eigenvalues dissolve.  The time--
dependent theory is supposed to
compute a characteristic lifetime τ,
for the decay of a state …  It turns
out to be a very hard problem to
define the lifetime directly.”

From Simon 1973:





The first resonances defined as
complex eigenvalues associated

with a radiation condition

Quiz:  who and when?



                              J.J. Thomson, 1884



    The evidence: J.J. Thomson, 1884



Why did physicists adopt the
Schrödinger theory?



Why did physicists adopt the
Schrödinger theory?



Quantisierung als Eigenwertproblem. (Dritte Mitteilung.), Ann. Physik, 1926.

PICTURE OF
SCHRÖDINGER EMOVED



PICTURE OF STARK REMOVED,
(PERMISSION REFUSED BY
DEUTSCHES MUSEUM)



      Both published in 1913, different experimental techniques.

PICTURE OF STARK
REMOVED,
(PERMISSION
REFUSED BY
DEUTSCHES MUSEUM)



One of Stark’s measurements.  Ann. der Phys. 5 (1929), p. 1016.
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• The Stark Hamiltonian has no eigenvalues
at all, as soon as k > 0  (Titchmarsh 1951;
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Some little problems with
Schrödinger’s analysis

• The Stark Hamiltonian has no eigenvalues
at all, as soon as k > 0  (Titchmarsh 1951;
Avron-Herbst 1977).

• The series coefficients follow a precise
asymptotic law, and the radius of
convergence is 0  (Graffi-Grecchi 1978,
Harrell-Simon 1980).



        J. Robert Oppenheimer









Oppenheimer’s formula (original)



Problems with Oppy’s formula

• Fishy derivation
• Calculation errors
• Typographic errors





•  And wrong:

Yamabe, Tachibana, Silverstone, PRA 1977



Physical mechanisms for
quantum resonance

• Shape resonance (Alpha emission)/Stark
effect - confinement of a particle by a
barrier, through which tunneling occurs.

• Dissolving of embedded eigenvalues by a
small perturbation.  Auger effect.



PICTURE OF GAMOW REMOVED,
 PENDING PERMISSION



Almost every introduction to quantum mechanics has copied Gamow’s diagrams:





And now for
completely different
textbook diagrams…



And now for
completely different
textbook diagrams…

see Thaller’s Visual Quantum
Mechanics at

http://www.kfunigraz.ac.at/imawww/vqm/pages/supplementary/107S_resonance-1.html



Weisskopf-Wigner, 1930.  (Breit was later.)

How to define a quantum resonance?



• Bumps in scattering amplitude
• ………..poles in its analytic continuation
• Zeroes in Jost function
• Poles in Green function
• Non-real eigenvalues

How to define a quantum resonance?



              How to define a resonance?

Howland’s razor:

No satisfactory definition of a
resonance can depend only on
the structure of a single operator
on an abstract Hilbert space.



E. Fermi

Assume

According to the Fermi Golden Rule, Γ is proportional to
the square of a matrix element of the perturbation.

PICTURE OF FERMI REMOVED,
 PENDING PERMISSION





Exponential decay in time is
impossible!

• Herbst, 1980:  If true as t → ∞, it would imply that the
Radon-Nikodym derivative of the spectral measure is
analytic in a strip, and by unique analytic continuation, its
support must include all of R.
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• For t → 0, clearly quadratic.
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Exponential decay in time is
impossible!



Exponential decay impossible!
• Herbst, 1980:  If true as t → ∞, it would imply that the Radon-

Nikodym derivative of the spectral measure is analytic in a strip, and
by unique analytic continuation, its support must include all of R.

• For t → 0, clearly quadratic.
• Best hope:

• How to calculate Γ?



Spectral concentration

•  E.C. Titchmarsh, 40s
and 50s

•  Conley-Rejto,
Riddell, Howland,
Nenciu

PICTURE OF TITCHMARSH
REMOVED PENDING

PERMISSION



Spectral concentration
 Let Hn be a sequence of self-adjoint operators with spectral
projectors En(S).  Let T and {Sn} be subsets of R.  Then the part
of the spectrum of Hn in T is concentrated on Sn provided that
                En(T - Sn)  → 0
in the strong sense.



Spectral concentration
 Let Hn be a sequence of self-adjoint operators with spectral
projectors En(S).  Let T and {Sn} be subsets of R.  Then the part
of the spectrum of Hn in T is concentrated on Sn provided that
                En(T - Sn)  → 0
in the strong sense.

Titchmarsh showed that Schrödinger’s series for the Stark effect
could be used to define shrinking intervals on which the
spectrum was concentrated.



T. Kato

F. Rellich

M. Sh. Birman

     Rigorous perturbation and scattering theory.



Early 1970’s

             J.-M. Combes                S. Graffi



Complex scaling

The unitary group of dilatations depends on a real parameter
Θ such that  x ->  exp(Θ) x, hence
   [U(Θ) f](x) := exp(νΘ/2) f(exp(Θ) x)
is a unitary group.

For suitable potentials one can treat Θ as a complex variable
and regard HΘ := U*(Θ) H U(Θ) as an analytic family.

Complex eigenvalues may arise, but are constant so long as
isolated.  Therefore they are inherent to H.



Complex scaling

Since
                  -∇2

Θ := -e2Θ∇2,

the (purely essential) spectrum of H0 is simply rotated into the
complex plane, to e2 Im(Θ)R.







Many variants of complex scaling

• Translation analyticity (Avron-Herbst 1977)
• Exterior scaling (Simon, 1979)
• Distortion scaling (Hunziker, 1986)



Summing divergent series

• Padé approximation
• Borel summation

– Anharmonic oscillator - Analysis by Bender-
Wu , Banks-Bender-Wu, Simon, and Graffi-
Grecchi-Simon related high-order perturbation
theory, analytic continuation, tunneling.



Simon’s 1973 Annals paper

• Connected various notions of resonance
• With complex scaling, reduced questions of

resonances to Kato-Rellich perturbation
theory

• Interpretation of Fermi Golden Rule as
leading-order non-real perturbation
correction to eigenvalue

• Spectral concentration for Auger-like
resonances



Simon’s 1973 Annals paper

Fermi Golden Rule

Simon’s 1973 Annals paper



The menagerie of canonical
models in the 70s-80s



The menagerie of canonical
models in the 70s-80s

• Anharmonic oscillator  -d2/dx2 + x2 + κ x4

• Double well -d2/dx2 - x2 + κ x4

• Stark effect  - ∇2 - 1/r + κ x1

• Hydrogen mol. ion - ∇2 - 1/|x| - 1/|x- R e1|
         Somewhat different:
• Zeeman Hydrogen + cst. Mag field
• Stark Wannier -d2/dx2 + cos x + κ x
• Shape resonance -d2/dx2 + R χ[1,2]

(Some with physical resonances, some without)



Common features for models 1-4 and
somewhat for 5-6

• High symmetry - mostly one-dimensional or
separable.

• Eigenvalue perturbation series can be
calculated based on an H0 with discrete
eigenvalues.



Common features for models 1-4 and
somewhat for 5-6

• High symmetry - mostly one-dimensional or
separable.

• Eigenvalue perturbation series can be
calculated based on an H0 with discrete
eigenvalues.  They diverge.



Common features for models 1-4 and
somewhat for 5-6

• They are boundary values of analytic
functions of κ, in sufficiently large regions
for summability methods to be valid, if
Taylor coefficients have controlled growth.

 The typical region is a cut plane.
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somewhat for 5-6

• They are boundary values of analytic
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spectra, we need complex scaling to define
these analytic functions as eigenvalues.



Common features for models 1-4 and
somewhat for 5-6

• They are boundary values of analytic
functions of κ, in sufficiently large regions
for summability methods to be valid, if
Taylor coefficients have controlled growth.
Note:  Standard dilatation analyticity might
not be the right kind of complex scaling.



Common features for models 1-4 and
somewhat for 5-6

• They are boundary values of analytic
functions of κ….

• An exponentially small quantity related to
the eigenvalues can be identified.
(Imaginary part of a resonance eigenvalue,
imaginary part of continuation of
eigenvalue on the cut, gap from broken
symmetry…)



Common features for models 1-4 and
somewhat for 5-6

• They are boundary values of analytic
functions of κ….

• With Cauchy’s formula the Taylor
coefficients can be written as moments of
the discontinuity on the cut plane.
Hence high-order pert. series asymptotics
⇔ asymptotics of the exponentially small
quantity as κ  → 0.
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be swamped by any finite-order correction
in perturbation theory, non-perturbative
methods are needed.
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Common features for models 1-4 and
somewhat for 5-6

• Hence high-order pert. series asymptotics
⇔ asymptotics of the exponentially small
quantity as κ  → 0.

• Since an exponentially small quantity would
be swamped by any finite-order correction
in perturbation theory, non-perturbative
methods are needed.

• With integration by parts, the exponentially
small quantity can be related back to the
solutions of the Schrödinger equation.



Example:  Stark effect
The dispersion relation:

For Stark, or any other Schrödinger equations
with real potential but non-real eigenvalue
parameter, as a consequence of Green’s
identity:



Shape resonance

• Perturbation theory with large barriers
           H0 + λ W,     W a nonnegative bump
• Ashbaugh thesis, Ashbaugh-Harrell 1982

– Fractional powers of 1/λ
– Calculation of resonance width Γ



What’s one-dimensional about all that?
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good pointwise control was available for
solutions of ODEs but not for PDEs.



What’s one-dimensional about all that?

• Not much, only that in the early seventies
good pointwise control was available for
solutions of ODEs but not for PDEs.

• Solutions of elliptic PDEs were better
understood in the 1980’s



S. Agmon, playing hookey at Luminy, 1984.



        B. Helffer, book, 1998 J. Sjöstrand. Lectures on webpage



Many other resonators

Including, but far from limited to, the following selection:





P. Hislop and Sigal, 1996,
Introduction to spectral theory,
state of art at the time.



Quantum resonance in the
post-Simon 1973 era

• Simon did some work in the 1980’s, with
occasional appearances into this
millennium!

• Helffer-Sjöstrand, etc., basically all the
canonical models without separability.

• Combes-Duclos-Klein-Seiler, Hislop-Sigal,
shape resonances without separability.

• Hunziker, Skibsted, etc. exponential decay
in time.

A.  Continuing the tradition.



Quantum resonance in the
post-Simon era

• Lavine,“Sojourn time” and time-delay.
• Melrose-Zworski, in the Lax-Phillips tradition,

studied the effects of “trapping.”
• Attempts at abstract formalisms by Gesztesy,

Holden, more recently Agmon
• Asymptotics and bounds on resonances of various

kinds (Ashbaugh, Burq, Froese, Gérard, Harrell,
Jensen, Martinez, Melrose, Sjöstrand, Svirsky,
Zworski)

B.  Independent traditions.



Quantum resonance in the
post-Simon era

• Mourre estimates - Commutator bound
implying local a.c. spectrum and decay of
Green functions.

• In canonical case, A is symmetrized
generator of dilatations, B = i[H,A],

    and a Mourre estimate is of the form
     PΔBPΔ ≥ αPΔ + K

C.  Conceptual advances in questions inspired by Simon 1973



Quantum resonance in the
post-Simon era

• Mourre estimates - Commutator bound
implying local a.c. spectrum and decay of
Green functions.
– originally not connected with resonances, but

notice the continued presence of the group of
dilatations.

C.  Conceptual advances in questions inspired by Simon 1973



Quantum resonance in the
post-Simon era

• Mourre estimates - Commutator bound
implying local a.c. spectrum and decay of
Green functions.

• Livshits-Feshbach matrix
– Howland realized the importance of this

already in the 1970s.
– Thesis and article of Orth

C.  Conceptual advances in questions inspired by Simon 1973



B is the “Schur complement of  (1-P)(H-z)(1-P)” in the
block decomposition of (H-z).



Howland showed B(z) meromorphic off the essential spectrum,
with only real singularities, & Kato-Rellich methods work.

B is the “Schur complement of  (1-P)(H-z)(1-P)” in the
block decomposition of (H-z).





Orth showed spectral concentration



Recent mileposts using
Howland-Orth definition

• Soffer-Weinstein, 1998.  Assuming the decay implied by a
Mourre est., nonvanishing of FGR, nonthreshold, then mod
exponential decay in time.

• Jensen-Nenciu, 2006.  Nice analysis of Livshits-Feshbach
matrix, modified FGR that works at some thresholds

• Cattaneo-Graf-Hunziker, preprint.  Lay out very general
assumptions (Mourre + existence of some commutators
involving A s.t. exi(isA) maps D(H) to itself).  Then
modified exp. Decay in time for states smoothly projected
near an unperturbed eigenvalue.



Recent mileposts using
Howland-Orth definition

• Soffer-Weinstein, 1998.  Assuming the decay implied by a Mourre
est., nonvanishing of FGR, nonthreshold, then mod exponential decay
in time.

• Jensen-Nenciu, 2006.  Nice analysis of Livshits-Feshbach matrix,
modified FGR that works at some thresholds

• Cattaneo-Graf-Hunziker, preprint.  Lay out very general assumptions
(Mourre + existence of some commutators involving A s.t. exi(isA)
maps D(H) to itself).  Then modified exp. Decay in time for states
smoothly projected near an unperturbed eigenvalue.

The canonical choice of A continues to be the generator of dilatations.
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