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Nanoelectronics

e Quantum wires
 Quantum waveguides

e Designer potentials - STM places individual
atoms on a surface; quantum dots

 Semi- and non-conducting “threads”

Simplified mathematical models



An electron near a charged thread

LMP 2006, with Exner and Loss
Hoyr =—-A—adé(x—1T)

Fix the length of the thread. What shape binds the
electron the least tightly? Conjectured for about 3
years that answer 1s circle.



Reduction to an 1soperimetric
problem of classical type.

Is it true that:
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Reduction to an 1soperimetric
problem of classical type.

Birman-Schwinger reduction. A negative eigenvalue
of the Hamiltonian corresponds to a fixed point of the
Birman-Schwinger operator:

Rird =0, Rip(s.s) = —Ko(k|l(s)=I()])

K, 1s the Macdonald function (Bessel function
that 1s the kernel of the resolvent in 2 D).



About Birman-Schwinger

With a factorization due to Birman and
Schwinger, an operator H will have
eigenvalue A iff the family of operators
B(A\) has eigenvalue 1.















It suffices to show that the largest eigenvalue of Ry

1s uniquely minimized by the circle, 1.e.,
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with equality only for the circle.



It suffices to show that the largest eigenvalue of Ry

1s uniquely minimized by the circle, 1.e.,

/OL/OLKO(K:!F(S)—F(S’)])dsdsf2/OL/OLKO(K’C(S)_C(S,)Ddsdsf

with equality only for the circle. Equivalently, show
that

Fy (D) := fom du /OL ds [KO(K,IF(SJru) —T(s)]) — K, (ﬂsm W—;)]

T

1s positive (0 for the circle).



Since K, 1s decreasing and strictly convex, with Jensen’s
inequality,

0= [ (3 fres ) ()|

where the inequality is strict unless fOL I (s+u) —I'(s)|ds is independent of s,

1.e. for the circle. The conjecture has been reduced to:
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A family of 1soperimetric
conjectures for p > 0:

C7(u) : fOL [(s4u) —T'(s)[Pds < L:T;p sin? T
C: 7 (u) fOL [(s+u) —T'(s)|Pds > 7;1}:1[51; ?

L

Right side corresponds to circle.



Proposition. 2.1.
C?(u) implies C¥ (u) if p > p' > 0.

C'L(u) implies C;F(u)

First part follows from convexity of x — x® for a > 1:

L1—|—p L /p!
sin? 74 > / (]F(s+u) r(s)yp)”ds

P L
p/p’
( / IT'(s+u) s)[P’ ds) .

1V



Proof when p =2



By assumption, |I'(s)| = 1, and hence from

2m 2w
2T = / [(s)>ds = / nmec,
R@Pds= [ >, )
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By assumption, |I'(s)| = 1, and hence from

2 2
2m = A |F(s)\2 ds = /ﬂ Z Z nme, - ¢, =S (g

0£meZ 0#nel

Z n’le,]” = 1.
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Inequality equivalent to




It is therefore sufficient to prove that

sinnz| < n sinz

Inductive argument based on

(n+1)sinx F sin(n + 1)z = nsinx F sinnx cos x 4 sin (1 F cos nx)
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Funny you should ask....
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curves that contain a line segment of length > s.
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What about p > 27

At what critical value of p does the circle stop being the
maximizer?

This problem 1s open. We calculated [II'(s+u) - L(s)ll; for
some examples:

Two straight line segments of length 7t:
IT(s+u) - ()P = 20+2(;t/2)P+/(p+1) .
Better than the circle for p > 3.15296...



What about p > 27

Examples that are more like the circle are not better than
the circle until higher p:

Stadium, small straight segments p >4.27898...



What about p > 27

Examples that are more like the circle are not better than
the circle until higher p:

Polygon with many sides, p > 6



What about p > 27

Examples that are more like the circle are not better than
the circle until higher p:

Polygon with rounded edges, similar.



Circle 1s local maximizer
for all p < »

Let I'(v, s) be a closed curve in the com-
plex plane parametrized by arc length s, of
the form (1 — ~)e'® + O(~,s), where v > 0.
Suppose that © is smooth (say, C? in v and
s), and that for each v, ©(~, s) is orthogonal
to €', Then I'(0, s) is a circle of radius 1, and
for any u, 0 < u < 2m,

L (T(v),p, u)
@r“"\-r

< 0.
+v=0



On a (hyper) surtace,
what object 1s most like
the Laplacian?

(A = the good old flat scalar Laplacian of Laplace)



Answer #1 (Beltrami’s answer):

Consider only tangential variations.



Answer #1 (Beltrami’s answer):

Consider only tangential variations.

Difficulty:

 The Laplace-Beltrami operator is an
intrinsic object, and as such is unaware
that the surface is immersed!



Answer #2

The nanoelectronics answer
 E.g., Da Costa, Phys. Rev. A 1981

-Arg +q,

q(x) = 1

Do | —

2
d d
., . .2
E K ; E K
j=1

j=1

=~ |

d=1,q=-k*/4 <0 d=2,q=- (K,-x,)*/4 <0



Some other answers

e In other physical situations, such as
reaction-diffusion, q(x) may be other
quadratic expressions in the curvature,
usually q(x) < 0.

 The conformal answer: ((x)is a
multiple of the scalar curvature.



Heisenberg's Answer
(1t he had thought about it)

2
d

1
q(x) = A Zﬁj
j=1



Heisenberg's Answer
(1t he had thought about it)

2
d

1
q(x) = A Zﬁj
j=1

Note: q(x)=0 |



Some more loopy problems




The 1soperimetric theorems for
- V2 + q(x)
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Minimality when g < 1/4.

Proof. a) Assume first that 0 < ¢ < 1/4. The minimal value of A{, which we

Ay, 1S
. s ])' 2 a4
inf 11/1_1 / ((i) + g Hzi-z) ds.
Ko Q ds ) |



Because the quantity in question is an iterated infimum, it may be calculated in tl
other order. By Cauchy-Schwarz’s inequality

o= [aaee [ o) ([ )
ff 22

with equality only if



A non linear functional




A non linear functional

o ¢\’ H A2y
E(C) = /() ds + on

A\, < E(C) = 4gm? < 7% for g < 1/4.



Lemma 5: If E(() < 72 for a positive test function ( normalized in L?. then

£

e
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infs (C(s)) > 1 —

Proof of Lemma 5.

1 1 1



Lemma 5: If E(() < 72 for a positive test function ( normalized in L?. then
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e
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infs (C(s)) > 1 —

Proof of Lemma 5.

1 1 1



Minimizer therefore exists.
Its Euler equation 1s

” 1 .
M= = O
C

2
_ﬂj _ —L'l. {




Solution of Euler equation of the form:

& 1++/1— M/\ cos (Ew A (5 — .»gﬂ"})

Nonconstant solution of this form excluded because )\, < x2.



The 1soperimetric theorems for
- V2 +q(x)
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Progress on -d?/ds? + g K2

 Benguria-Loss, Contemp. Math. 2004

— Connnection to Lieb-Thirring in one-D
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Progress on -d?/ds? + g K2

 Benguria-Loss, Contemp. Math. 2004
— Connnection to Lieb-Thirring in one-D
— Family of curves with same A, as circle when
g=1
— g > 1/2.



Progress on -d?/ds? + g K2

e Linde Proc AMS 2005
* A\, >0.6085 (convex, etc.)












Universal Bounds using Commutators

e A “sum rule” identity (Harrell-Stubbe, 1997):

2 S (g, pu;)|”

d A — A
VDY : J

Here, H 1s any Schrodinger operator, p 1s the gradient
(times -1 if you are a physicist and you use atomic units)



Commutators: [A,B]:= AB-BA

3a. The equations of space curves are commutators:

d ol =
ds’ B

Note: curvature 1s defined by a second commutator



The Serret-Frenet equations as
commutator relations:

X dem d y
—h T = Rl dbm T
ds* ds ds ds

[H? Xm] i (2.2)

[Xm [H: Xm]] = Qt?ﬂn' (2.3)



Lemma. Let M be a smooth curve in R, d =2 or 3. Then for

-

2
H=-1 V(s) and e WiM),

s
d . .
Z H[Ha}(m ‘75:'”2 =4 / (
JM

=)

dy
(s

2 2
o )
LR 0| ) ds.



Prnpnsitiﬂn 2.1 Let M be a smooth curve in R, v =2 or 3. Then for
d?

H == -2 +V(s) and p € W (M),
(¥ ]
Z o] K2
|| .—}{m “r*” S '1/ f_*-,« —} |§913 ds
=0 M s 1

Proof. By closure it may be assumed that ¢ € C2°(M). Apply (2.2) to ¢
and square the result, to obtain

2
- f.'f L2 1 - 1 ,ff (7
4 (rfn (i) T Ih‘g”f}ﬂf”g i 2 Kipnlm @ i) :

Sum on m and integrate. QED



Interpretation:

Algebraically, for quantum mechanics on a
wire, the natural H,, 1s not

p°,
but rather

H,,:= p*+x%/4



Corollary 2.2 Lel M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

dui\® K2 9 i



Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

I <4 i 2+”—2u2 ds (2.5)
T S\ \ ds 4 ) .

That 1s, the gap for any H 1s
controlled by an expectation value
of H,,.



Corollary 2.2 Let M be as in Proposition 2.1 and suppose that H is a
Schrodinger Hamiltonian with a bounded measurable potential V(s). Then

dur\? K2 9 i

Furthermore, iof H is of the form

Hy = —ﬁ + gK?,
b UFSE . 1
then _
I' < max (ci, é) Al. (2.6)

FEqguivalently, the universal ratio bound

A 1
. < max (5, 1+ —)
A1 g

holds.



Bound 1s sharp for the circle:

9
L ) R
A dmg q




Gap bounds for (hyper) surfaces

Let M be a d-dimensional manifold immersed in Rt

Theorem 3.1 Let H be a Schrodinger operator on M with a bounded po-
tential, 1.e.,

H=-A+V, (3:1)

['(H) < lf / (.-ﬂ?nw.ﬂg —1—!321@) dV ol
a Jm N

4 h?
= <u], (—ﬂ. - ’T) 'le>-

Here h is the sum of the principal curvatures.



Corollary 3.2 Let H be as in (3.1) and define 6 := supy; (;_115 — V). Then

(M) < E()fil +4).



Bound 1s sharp for the sphere:

M o=gd®, A =gd®+d



Spinorial Canonical
Commutation

| = d t-—a e b

a Z 1 0s; g it
g=1

and for a dense set of functions ¢,

IPe||* = (@, Hy/a0) -

(4.1)

(4.2)



Spinorial Canonical
Commutation

s, 1
P = Z (t;j.E - ah.jn) (4.1)

3=1

and for a dense set of functions ¢,

IPe||* = (@, Hy/a0) - (4.2)

Thus P plays the réle of a momentum operator, with which there is a version
of canonical commutation (cf. (1.9)) as follows. Defining a variant commuta-
tor bracket for operators L2(M) — R @ L?(M) by [A;B] := A-B—B-A,a

calculation shows that [P; Xper] = Zle o %ﬁ;ﬂ = 1 (identity operator),
|
and by averaging on £k,
1
1= - [P; X] (4.3)
i

which is a coordinate-independent formula.



Sum Rules

Proposition 4.1 Let H be as in (3.1), with eigenvalues { A} and normal-
ized eigenfunctions {u;.}. Then

{85 Pty )
Z - ~" (4.4)

,xﬁé;a



Corollaries of sum rules

e Sharp universal bounds for all gaps

* Some estimates of partition function

Z(t) = 3 exp(-t M)



Speculations and open problems

Can one obtain/improve Lieb-Thirring bounds as a
consequence of sum rules?

Full understanding of spectrum of H..
What spectral data needed to determine the curve?
What is the bifurcation value for the minimizer of A,?

Physical understanding of H, and ot the spinorial operators
it 1s related to.



Sharp universal bound
for all gaps

Corollary 4.4 b) For H, be of the form (1.10) on a smooth,

compact submanifold. Then

2 — 2 —
[A]‘Le)\l}' I l] E !(1 ‘|_ ::—) f}'lrr. = Dn}- (1 @ T;) )\ﬂ N B, 7 DTE] :

D, = B Ve | = {20 A2,
f d

This bound s sharp for every non-zero eigenvalue gap of Hi on the
r

with

sphere.



Partition function

/(t) ;= tr(exp(-tH)).



Partition function

( )Z (exp(—1A;) [PujHQ'?
J



which implies

Corollary 4.5 a) Let H be as (3.1), with M a compact, smooth subman-

ifold. Then t exp (—0t) Z(t) is a nondecreasing function;

b) For H, be of the form (1.10) on a smooth, compact submanifold M,

4w | . .
t2o Z(t) 1s a nondecreasing function.



