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Abstract

The Blaschke–Lebesgue Theorem states that among all planar convex domains
of given constant width B the Reuleaux triangle has minimal area. It is the purpose
of the present note to give a direct proof of this theorem by analyzing the underlying
variational problem. The advantages of the proof are that it shows uniqueness
(modulo rigid deformations such as rotation and translation) and leads analytically
to the shape of the area–minimizing domain. Most previous proofs have relied on
foreknowledge of the minimizing domain. Key parts of the analysis extend to the
higher–dimensional situation, where the convex body of given constant width and
minimal volume is unknown.

Mathematics subject classification 52A10, 52A15, 52A38, 49Q10

I. Introduction.

A convex body in IRd is said to have constant width B if any two distinct
parallel planes tangent to its boundary are separated by a distance B. For d = 2
such bodies are often called orbiforms, and for d = 3 they are called spheroforms.
A well-known example is the Reuleaux triangle, whose boundary consists of three
equally long circular arcs with curvature 1/B. The arcs meet at the corners of an
equilateral triangle. Reuleaux polygons with any odd number of sides likewise enjoy
the property of constant width.

It has long been known that among all two-dimensional convex bodies of con-
stant width, the Reuleaux triangle has the smallest area. W. Blaschke [Bla15] and
H. Lebesgue [Leb14, Leb21] were the first to show this, and the succeeding decades
have seen several other works on the the problem of minimizing the area or volume
of an object given a constant width; see [Fuj27-31, BoFe34, Egg52, Bes63, ChGr83,
Web94, Gha96, and CCG96]. Objects of constant width have several practical uses,
and have been entertainingly discussed in [Fey89, Kaw98]. For instance, coins are
sometimes designed with such shapes, because constant width allows their use in
vending machines.
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Ths disadvantage of the arguments of Blaschke and Lebesgue and most sub-
sequent proofs of the Blaschke-Lebesgue theorem is that they are not sufficiently
analytic to derive the minimality of the Reuleaux triangle without prior knowledge
of the minimizer. No doubt this is one of the reasons that the higher-dimensional
analogue of the problem has remained open: What body (or bodies) of constant
width in three or more dimensions has the smallest volume?

Another reason may be the rigidity of the condition of constant width. The
Reuleaux triangle is only about 10% smaller than the disk of the same width, and
the not quite tetrahedrally symmetric Meissner bodies [BoFe34, section 67], which
are the best-known conjectured minimizers in the three–dimensional case, are less
than 20% smaller than the ball.

It is my purpose here to prove the Blaschke-Lebesgue theorem in a directly ana-
lytic way, and to frame the problem in higher dimensions as a step toward answering
the question just posed.

Two previous attempts to give analytical proofs can be cited. Fujiwara [Fuj27-
31] expressed the area in terms of r(θ) and showed through a lengthy calculation
that in general the area of an orbiform exceeds that of the Reuleaux triangle of the
same width. His proof gives little indication how to find the optimal geometry from
first principles. More recently Ghandehari [Gha96] gave an argument via optimal
control theory and Pontryagin’s maximum principle, which resembles the one of this
article in a few respects.

II. On the Minimal Volume of a Convex Body of Constant Width.

A body K of constant width is strictly convex, and therefore ∂K may be ex-
pressed as a continuous image of the sphere Sd−1 via the mapping Γ(ω) which as-
sociates to any unit vector ω the point of ∂K with supporting plane perpendicular
to ω. (At smooth points of ∂K,Γ is the inverse of the Gauss map.)

If x denotes a point on the boundary, then the support function of K will be
defined in the usual manner as h(ω) := x · ω, where x = Γ(ω). Notice that h(ω) is
the distance from the origin of a plane in contact with ∂K, provided that the origin
is within K, which may always be assumed. Given the support function h(ω) of a
convex set, the set itself can be reconstructed as the envelope of its supporting planes.
Choosing the independent variable as ω will be convenient for several reasons, among
them the simple form of the formula for the width of K:

h(ω) + h(ωa) = B, (1)

where ωa designates the point on S1 antipodal to ω: for S1 one could identify ω
as the usual angular variable and write ωa = ω ± π, but dimension–independent
notation will be preferred as far as possible.

A simple exercise using the divergence theorem shows that the volume can be
written in terms of the support function:

V ol(K) =
1
d

∫
∂K

h(ω)dS =
1
d

∫
Sd−1

h(ω)
dω∏
j κj
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In this formula κj are the principal curvatures of ∂K. Here and elsewhere, it will be
more convenient to express quantities in terms of the radii of curvature Rj := 1

κj

(or zero, at non-smooth points of ∂K). Hence

V ol(K) =
1
d

〈
h,

d−1∏
j=1

Rj

〉
Sd−1

. (2)

The brackets here designate the inner product on L2(Sd−1). The set-up described
to this stage is classical; for instance see [BoFe34], [Bla49].

The question under consideration is:

Problem 1: Determine the minimal volume of a convex body K of fixed width B.

This problem will be recast with the benefit of several observations, beginning
with a useful formula, which results from a direct calculation:

∇2
Sd−1h =

d−1∑
j=1

Rj − (d− 1)h. (3)

Equation (3) was known to Weingarten [Wei1884] in the nineteenth century (see
also [Sch93]). Together with (1) it implies that

∑
j

Rj(ω) +
∑

j

Rj(ωa) = (d− 1)B. (4)

Observe that d− 1 is the second eigenvalue of −∇2
Sd−1 , so the differential equa-

tion (3) is not uniquely solvable. However, according to the Fredholm alternative
theorem, it is uniquely solvable with a reduced resolvent G : H1 ←↩, where

H1 := L2(Sd−1)	 span[Y m
1 ],

and Y m
1 are the spherical harmonics [Mül66] such that

−∇2
Sd−1Y

m
1 = (d− 1)Y m

1

(If d = 2, then Y m
1 = sin ω and cos ω. The notation Y m

` will be used in any
dimension.)

Now, G is a bounded, smoothing operator. That is,

V ol(K) =
1
d

〈
G


∑

j

Rj


 ,

∏
j

Rj

〉
Sd−1

(5)

is a bounded quadratic form on L2(Sd−1), and the operator G maps L2(Sd−1) into
W 2(Sd−1) ∩H1. Moreover, the condition of orthogonality to the span of the Y m

1 is
quite natural geometrically. For the support function, this restriction means that
the centroid has been moved to the center of the coordinate system. Any given set of
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nonzero coefficients of Y m
1 could be specified, and this would merely correspond to

rigidly displacing the body K by a fixed vector with respect to the centroid. On the
other hand, the condition that

∑d−1
j=1 Rj be orthogonal to Y m

1 is necessary for ∂K
to be a closed boundary: If d = 2, it is the condition that the curve ∂K be closed. If
d = 3, this condition is necessary and essentially sufficient for the Gauss curvature
to determine an immersed closed surface ∂K (uniquely up to rigid motions) [Min67,
p. 130].

When d = 2, there is only one curvature defined on the boundary, and V
becomes a symmetric quadratic form

V ol(K) =
1
2
〈G[R], R〉S1 . (6)

When d = 3, a theorem of Blaschke [Bla15] (cf. [ChGr83, p. 66]) states that
for objects of constant width B, the volume and surface–area S are related by

V ol(K) =
BS

2
− πB3

3
.

It follows that the minimizers of the volume functional are identical to the minimizers
of the surface–area functional, which for d = 3 may be written as a symmetric
quadratic form in R :=

∑
j

Rj :

Φ1[R] :=
1

d− 1
〈G[R], R〉Sd−1 (7)

[BoFe34, p. 63]. Recall that the support function enters through G[R] = h. The
functional (7) will be considered here as the objective in any dimension, although
its interpretation involves Quermass integrals and is not immediate when d > 3.

With this notation, (4) is written:

R(ω) + R(ωa) = (d− 1)B, (8)

This implies that admissible R must satisfy

0 ≤ R(ω) ≤ (d− 1)B, (9)

and the averages of R and h are both determined: It follows from (8) and (1) that

Rave =
(d− 1)B

2
, have = B/2. (10)

Because of (10) and the fact that G maps the set of functions of mean zero
to itself, a simplification is achieved by subtracting the averages of R and h, so
R := R− (d−1)B

2 and h := h− B
2 . In these terms, just as h = G[R], h = G[R]. There

results an alternative to Problem 1:

Problem 2: Minimize the functional

Φ[R] := 〈G[R], R〉Sd−1 (11)
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for R ∈ H :=
{

f ∈ L2(Sd−1) : f ⊥ span {Y m
1 } , f(ωa) = −f(ω), |f(ω)| ≤ (d−1)B

2

}
.

Remarks.

1. Functions in H are orthogonal to the lowest two eigenspaces of −∇2. It follows
that Φ is a negative definite quadratic form on H. In particular, the function cor-
responding to the ball, R = 0, maximizes Φ. Because of the concavity of Φ, the
minimizers are extremals of H. This statement is made somewhat more precise in
Theorem 1, below.

2. When d = 2, minimizing Φ on H is equivalent to finding the convex region of
smallest area for a given B. When d = 3, the theorem of Blaschke alluded to above
ensures that minimizing Φ is equivalent to minimizing the volume functional, but
some elements of H may not correspond to embedded convex bodies. Hence Problem
2 is fully equivalent to Problem 1 only for d = 2.

Now, the derivative of Φ with respect to the variation R→ R + δζ is simply

dΦ
dδ

∣∣∣
0

= 2
〈
G[R], ζ

〉
Sd−1 = 2

〈
h, ζ

〉
. (12)

It is then possible to conclude:

Theorem 1. Minimizers of Problem 2 exist, and every minimizing R has the prop-
erties that

(a) µ
{

ω : h > 0, |R| < (d−1)B
2

}
= µ

{
ω : h < 0, |R| < (d−1)B

2

}
= 0

(b) h > 0⇒ R = − (d−1)B
2

, h < 0⇒ R = (d−1)B
2

a.e.

Proof. The existence of a minimizer follows in a standard way from the compactness
of the operator G, considered as an operator on the Hilbert space

{
f ∈ L2(Sd−1) : f ⊥ span {Y m

1 , 1}} .

(Minimizers are non–unique at least by rotation.)

Consider now admissible variations for Φ, normalizing B temporarily for con-
venience so that (d−1)B

2
= 1, and thus −1 ≤ R ≤ 1.

Suppose that for some minimizing R and some ε > 0, the set

Sε :=
{
ω : h > 0, |R| ≤ 1− ε

}
is of positive measure. Then the antipodal set Sa

ε is also of positive measure, and any
variation ζ supported in Sε must be extended to Sa

ε antisymmetrically by ζ(ωa) =
−ζ(ω). Observe here that it is unnecessary to restrict ζ to be orthogonal to Y m

1 , as
any such component is orthogonal to h and hence will not contribute to (12).

Let ζ run through a basis for L2[Sε]	 χSε
consisting of bounded functions ζn,

extended antisymmetrically to Sa
ε as mentioned above. (Boundedness, together with

ε > 0, ensures admissibility. The case ζ proportional to χSε
will be considered sepa-

rately below.) From (11), with h (ω) := G[R] the first variation (12) is proportional
to
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〈
h, ζ

〉
=

∫
Sε

h (ω) ζ (ω) dω+
∫
Sa

ε

h (ω) ζ (ω) dω

=
∫
Sε

h (ω) ζ (ω) dω +
∫
Sε

(−h (ω)
)
(−ζ (ω)) dω

= 2
∫
Sε

h (ω) ζ (ω) dω.

Optimality implies that this vanishes and hence that h = constant a.e. on Sε.

Next consider (11) subjected to the variation ζ = −χSε
+ χSa

ε
:

If µ(Sε) > 0, then
dΦ
dδ

= −2
∫

Sε

h + 2
∫

Sa
ε

h < 0, (13)

which contradicts optimality. This concludes the proof of (a).

For (b), observe from (a) that either h = 0 a.e., which corresponds to the sphere,
i.e., the maximizing shape, or else there is a set of positive measure for which h > 0
and R = −1 or +1. But if R = +1, then the variation leading to (13) is still
admissible for δ ≥ 0, so (13) yields a contradiction. Similarly for h < 0 if R = −1.

Corollary 2. (The Blaschke–Lebesgue theorem.) Among all two–dimensional con-
vex regions of a given constant width B, the Reuleaux triangle has the smallest area.

Proof. Here ω is treated as the angular variable for S1, and it will be assumed that
B = 1. As the circle is not the minimizer, statement (b) of Theorem 1 implies that
m := maxh > 0. By performing a rotation, it may be assumed that h(0) = m, and
by continuity there is an interval around 0 such that, when rewritten in terms of h
and specialized to one variable, (3) becomes

h
′′

= −h− 1
2
, (14)

yielding

h =
(

m +
1
2

)
cos ω − 1

2
(15)

on that interval. The endpoints of the interval correspond to h = 0, i.e., ω =
± arccos 1

2m+1 =: ±α. At these points, h
′ 6= 0. Since standard regularity theory

implies that h has an absolutely continuous derivative [GiTr83, p. 158], ±α cannot
abut an interval on which h = 0. The only possibility is that h becomes negative and
on the next interval the differential equation (14) produces a solution antisymmetric
about α, i.e.,

h = −
(

m +
1
2

)
cos(2α − ω) +

1
2
. (16)

The function h switches between the two forms (15) and (16), as shown in the
figure.
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h

α α α
ω

2 3

m

The minimizing support function minus 1/2.

_

The support function is also subject to periodicity (ω + 2π ∼= ω) and antisymmetry
(h(ω+π) = −h(ω)). The only candidates for optimality thus correspond to the odd–
sided regular Reuleaux polygons with B = 1. An elementary calculation shows that
the area of any such figure of given width is an increasing function of the number of
sides.

Remarks about Three or More Dimensions.

There are two barriers to extending the proof of the Blaschke-Lebesgue Theorem
to higher dimensions. One of these is connected with the ability to extend solutions of
ordinary differential equations uniquely across a boundary; this needs to be replaced
by a PDE analysis.

The other, probably more substantial, barrier is the gap between the conditions
of Problem 2 and Problem 1. As remarked already, if the dimension d > 2, then the
analytic conditions of Problem 2 differ from the geometric conditions which would
guarantee that the curvature function R defines a convex body as naturally embed-
ded in IRd. Numerical calculations indicate that the simplest generalization of the
Reuleaux triangle, viz., the solution of (3) with R = 2χS , S = S2 ∩{x1x2x3 > 0} , is
not the support function of an embedded convex body. If, as is plausible, this min-
imizes Problem 2, then additional conditions will have to be imposed for a solution
to Problem 1.
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