pic1 = ParametricPlot3D[{4 Sin[phi] Cos[theta], \ 4 Sin[phi] Sin[theta], 4 Cos[phi]},{phi,Pi/6, Pi},\ {theta,0,2 Pi}, PlotRange -> {-4,4}]
pic2 = ParametricPlot3D[{rho Sin[Pi/6] Cos[theta], \ rho Sin[Pi/6] Sin[theta], rho Cos[Pi/6]},{rho,0,4},\ {theta,0,2 Pi}, PlotRange -> {-4,4}]
Show[{pic1,pic2}]
In the spherical coordinate system, you would have
Integrate[rho^2 Sin[phi]^2 Sin[theta]^2 * rho^2 Sin[phi], {phi,Pi/6, Pi} \ {rho, 0, 4}, {theta, 0,2 Pi}]
The extras after the * are because the differential is rho^2 drho sin(phi)
dtheta dphi. Remember that the order or operations in Mathematica is
like
the order of the integral signs (last first). While Mathematica will
execute
the command just given, I find it is often better to help her along:
Integrate[rho^2 Sin[phi]^2 Sin[theta]^2 * rho^2 Sin[phi],{rho,0,4}]
Integrate[%, {theta,0, 2 Pi}]
Integrate[%, {phi, Pi/6, Pi}]
N[%]
Up to Test 3 solutions