In[12]:=
pic1 = ParametricPlot3D[{4 Sin[phi] Cos[theta], \
4 Sin[phi] Sin[theta], 4 Cos[phi]},{phi,Pi/6, Pi},\
{theta,0,2 Pi}, PlotRange -> {-4,4}]
Out[12]=
-Graphics3D-
In[13]:=
pic2 = ParametricPlot3D[{rho Sin[Pi/6] Cos[theta], \
rho Sin[Pi/6] Sin[theta], rho Cos[Pi/6]},{rho,0,4},\
{theta,0,2 Pi}, PlotRange -> {-4,4}]
Out[13]=
-Graphics3D-
In[14]:=
Show[{pic1,pic2}]
Out[14]=
-Graphics3D-
In the spherical coordinate system, you would have
In[15]:=
Integrate[rho^2 Sin[phi]^2 Sin[theta]^2 * rho^2 Sin[phi], {phi,Pi/6, Pi}
\
{rho, 0, 4},
{theta, 0,2 Pi}]
The extras after the * are because the differential is rho^2 drho sin(phi)
dtheta dphi. Remember that the order or operations in Mathematica is
like
the order of the integral signs (last first). While Mathematica will
execute
the command just given, I find it is often better to help her along:
In[16]:=
Integrate[rho^2 Sin[phi]^2 Sin[theta]^2 * rho^2 Sin[phi],{rho,0,4}]
Out[16]=
3 2 1024 Sin[phi] Sin[theta] -------------------------- 5
In[17]:=
Integrate[%, {theta,0, 2 Pi}]
Out[17]=
3 1024 Pi Sin[phi] ----------------- 5
In[18]:=
Integrate[%, {phi, Pi/6, Pi}]
Out[18]=
2048 Pi 384 Sqrt[3] Pi ------- + -------------- 15 5
In[19]:=
N[%]
Out[19]=
846.831
Up to Test 3 solutions