3 (4 points). A solid S consists of the part of a ball of radius 4 that lies
pic1 = ParametricPlot3D[{4 Sin[phi] Cos[theta], \
4 Sin[phi] Sin[theta], 4 Cos[phi]},{phi,0,Pi/6},\
{theta,0,2 Pi}, PlotRange -> {0,4}]
pic2 = ParametricPlot3D[{rho Sin[Pi/6] Cos[theta], \
rho Sin[Pi/6] Sin[theta], rho Cos[Pi/6]},{rho,0,4},\
{theta,0,2 Pi}, PlotRange -> {0,4}]
Show[{pic1,pic2}]In the cylindrical coordinate system, you would have
Integrate[r^2 Cos[theta]^2 * r, {theta,0, 2 Pi} \
{r, 0, 4 Sin[Pi/6]},
{z, r Cot[Pi/6],Sqrt[16-r^2]}]
The extra r is because the differential is r dr dtheta dz. Remember that the
Integrate[r^2 Cos[theta]^2 * r,{z, r Cot[Pi/6],Sqrt[16-r^2]}]
Integrate[%, {r, 0, 4 Sin[Pi/6]}]
Integrate[%, {theta, 0, 2 Pi}]
N[%]
Up to Test 3 solutions