In[10]:=
pic1 = ParametricPlot3D[{4 Sin[phi] Cos[theta], \
4 Sin[phi] Sin[theta], 4 Cos[phi]},{phi,0,Pi/6},\
{theta,0,2 Pi}, PlotRange -> {0,4}]
Out[10]=
-Graphics3D-
In[11]:=
pic2 = ParametricPlot3D[{rho Sin[Pi/6] Cos[theta], \
rho Sin[Pi/6] Sin[theta], rho Cos[Pi/6]},{rho,0,4},\
{theta,0,2 Pi}, PlotRange -> {0,4}]
Out[11]=
-Graphics3D-
In[12]:=
Show[{pic1,pic2}]
Out[12]=
-Graphics3D-
In the cylindrical coordinate system, you would have
In[13]:=
Integrate[r^2 Cos[theta]^2 * r, {theta,0, 2 Pi} \
{r, 0, 4 Sin[Pi/6]},
{z, r Cot[Pi/6],Sqrt[16-r^2]}]
The extra r is because the differential is r dr dtheta dz. Remember that the
order or operations in Mathematica is like the order of the integral
signs
(last first). While Mathematica will execute the command just given, I
find
it is often better to help her along:
In[14]:=
Integrate[r^2 Cos[theta]^2 * r,{z, r Cot[Pi/6],Sqrt[16-r^2]}]
Out[14]=
4 2 3 2 2 = -(Sqrt[3] r Cos[theta] ) + r Sqrt[16 - r ] Cos[theta]
In[15]:=
Integrate[%, {r, 0, 4 Sin[Pi/6]}]
Out[15]=
2 2 2048 Cos[theta] 384 Sqrt[3] Cos[theta] = ---------------- - ----------------------- 15 5
In[16]:=
Integrate[%, {theta, 0, 2 Pi}]
Out[16]=
128 (16 - 9 Sqrt[3]) Pi = ----------------------- 15
In[17]:=
N[%]
Out[17]=
11.0327
Up to Test 3 solutions