b) For an explicit integral expression for the surface area of the ramp,
we need to differentiate the position vector by u and by v and take the
cross product
In[16]:=
rvec[u_,v_] := {u Cos[v], u Sin[v], v/3}
In[17]:=
D[rvec[u,v], u]
D[rvec[u,v], v]
Out[17]=
{Cos[v], Sin[v], 0}
Out[18]=
1 {-(u Sin[v]), u Cos[v], -} 3
In[19]:=
CrossProd = {%%[[2]] %[[3]] - %%[[3]] %[[2]],
%%[[3]] %[[1]] - %%[[1]] %[[3]],
%%[[1]] %[[2]] - %%[[2]] %[[1]]}
Out[19]=
Sin[v] -Cos[v] 2 2 {------, -------, u Cos[v] + u Sin[v] } 3 3
In[20]:=
Simplify[Sqrt[%[[1]]^2 + %[[2]]^2 + %[[3]]^2 ]]
Out[20]=
1 2 Sqrt[- + u ] 9
In[21]:=
SurfArea = Integrate[Sqrt[1/9 + u^2], {u,0,1},{v,0, 4 Pi}]
Out[21]=
2 Pi (3 Sqrt[10] + ArcSinh[3]) ------------------------------ 9
The value of the integral wass not required, but in case you are interested,
In[22]:=
N[%]
Out[22]=
7.89257
Up to Solutions to Test 4