In[1]:=
  X[y_,z_] := y + 4
In[2]:=
  FunnyFactor[f_,y_,z_] := Sqrt[1 + (D[f,x])^2 + (D[f,y])^2]
In[3]:=
  FunnyFactor[X[y,z],y,z]
Out[3]=
Sqrt[2]
That's not so funny!
 What is the domain for the variables y and z? It is the interior of a circle of
radius 2:
         y^2 + z^2  == 4
So wouldn't it be nice if the variables were x and y so we could use polar 
coordinates?  Well, why not use them anyway, with
        z := r Cos[theta], y = r Sin[theta]   ?
 Sure. The integral then runs for theta from 0 to 2 Pi and for r from 0 to 2.
 The integrand has to be a function of r and theta, so we substitute for x, y,
and z:
In[4]:=
  X[y,z]^2 + y^2 + z^2
Out[4]=
2 2 2 y + (4 + y) + z
In[5]:=
  % /. {y -> r Sin[theta], \
                               z -> r Cos[theta]}
Out[5]=
2 2 2 2 2 r Cos[theta] + r Sin[theta] + (4 + r Sin[theta])
In[6]:=
  Simplify[%]
Out[6]=
          2    2
  32 + 3 r  - r  Cos[2 theta] + 16 r Sin[theta]
  ---------------------------------------------
                        2
In[7]:=
  Integrand[r_,theta_] = %
Out[7]=
          2    2
  32 + 3 r  - r  Cos[2 theta] + 16 r Sin[theta]
  ---------------------------------------------
                        2
In[8]:=
  Integrate[Integrand[r,theta], {r,0,2}, {theta,0,2 Pi}] 
Out[8]=
72 Pi