Due Thursday, 1 February:
=RAND() |
---|
=RAND() |
Due Thursday, 15 February:
So, to practice let's begin the recitation on Tuesday by modeling the ants in Howie L1. You may have noticed lots of them showing up recently. Let's model them.
Let the number of ants in L1 at time t be y(t). They constantly swarm into L1 from outside, and are violently terminated by anti-ant students.
Here are some alternative cases to model.
At time t=0, there are 4000 ants in L1.
Due Thursday, 15 March:
x - y - 2 z = 0 2x + y - z = 0 x + 2y + z = -1
2x + 5y - 2z = 5 x + y = 0 3x + 2z = 4
4x + 5y - 6z = -1 x + y + z = 2 2x + 2z = 2
[9 8 7 | 14] [6 5 4 | 8 ] [3 2 1 | 2 ]
[9 8 7 | 7 ] [6 5 4 | 4 ] [3 2 1 | 7 ]
[8 1 6 | 15] [3 5 7 | 15] [4 9 2 | 15]
[8 1 6 1 | 0 ] [3 5 7 1 |-10] [4 9 2 1 |-8 ] [1 0 1 0 | 0 ]
[8 0 6 2 | 6 ] [0 5 7 1 | 7 ] [1 9 -1 1 |-1 ] [1 0 2 0 | 2 ]
[1 0] [2 1]
[3 0] [0 -1]
[1 2] [1 2]
[2 cos(1) -2 sin(1)] [2 sin(1) 2 cos(1)]
[1 2] [3 4]
[4 2] [8 1]
[1 2] [2 4] [3 6]
[1 0 0] [2 2 3] [3 2 2]
[1 2 3 4 ] [5 6 7 8 ] [9 10 11 12]
[1 2 3 4 ] [5 6 7 8 ] [9 1 0 -1 ] [-2 -3 -4 -5]
[1 2 3 4] [5 6 11 12] [-1 1 0 2] [1 1 2 2]
[6 7 8] [1 5 9] [8 3 4]
[6 7 8 0] [1 5 9 0] [8 3 4 0] [0 0 0 2]
Due Thursday, 5 April.
[1 2] [3 4]
[4 2] [8 1]
[1 2] [2 4] [3 6]
[1 0 0] [2 2 3] [3 2 2]
[1 2 3 4 ] [5 6 7 8 ] [9 10 11 12]
[1 2 3 4 ] [5 6 7 8 ] [9 1 0 -1 ] [-2 -3 -4 -5]
[1 2 3 4] [5 6 11 12] [-1 1 0 2] [1 1 2 2]
[6 7 8] [1 5 9] [8 3 4]
[6 7 8 0] [1 5 9 0] [8 3 4 0] [0 0 0 2]
[1 2] [-1] [2 4] x = [-2] [3 6] [-3]
[1 2 3 4 ] [ 1] [5 6 7 8 ] x = [ 1] [9 10 11 12] [ 1]
[1 2 3 4 ] [ 1] [5 6 7 8 ] x = [-2] [9 10 11 12] [ 1]
[6 7 8] [ 1] [1 5 9] x = [-2] [8 3 4] [ 3]
xi | yi |
---|---|
0 | -3 |
1 | 0 |
2 | 3 |
3 | 5 |
4 | 7 |
5 | 12 |
6 | 14 |
[2 1] [ 1] [4 2] x = [ 0] [1 1] [ 0]
x + 2 y = 0 2x + y + z = 1 2y + z = 3 x + y + z = 0 3x + 2 z = -1
[ 1] [ 2] [ 0] [ 2] [ 0] [ 1] [ 1] [-1] [ 1]Find the inverse of that matrix and explain what it does.
[ 9] [ 8] [ 7] [ 3] [ 2] [ 1] [ 6] [ 5] [ 4]
[ 1] [ 2] [ 4] [ 2] [ 0] [ 4] [ 1] [-1] [ 1]
[ 1] [ 2] [ 0] [ 6] [ 2] [ 0] [-4] [ 4] [ 1] [-1] [-3] [ 0] [ 1] [ 3] [ 1] [ 8]
[1 1 1 0] [2] A = [ ], g = [ ] [0 1 1 1] [0]
[1 1 1 1] [0] A = [2 0 1 0], g = [1] [0 2 1 0] [2]
x2 + 2 x3 + x4 = 1 x1 + x2 + x3 + x4 = 2
[1 2] [3 4]
[4 2] [8 1]
[1 2] [1 1]
[1 0 0] [2 2 3] [3 2 2]
[6 1 8] [7 5 3] [2 9 4]
[1 1 2] [1 1 2] [2 2 4]
[3 1] [2 4]
[0 1] [1 2]
[7 5] [5 7]
[1 1] [0 1]
[3 -2 0 ] [-2 0 0 ] [1 0 2 ]
[1 2 3 ] [2 4 6 ] [3 6 9 ]
[0 0 1] [0 1 0] [1 0 0]
[1] [1] [2]
[ 1] [ 1] [ 2]
[ 1] [-1] [ 0]
[ 0] [ 2] [-1]
[4 3 8] [9 5 1] [2 7 6]Hint: This matrix is a magic square, which means that all rows and columns (and even diagonals) sum to the same thing. This tells us something about an eigenvector.
x' = 3 x + y y' = 2 x + 4 y
x' = 7 x + 5 y y' = 5 x + 7 y
x' = 3 x - 2 y y' = - x z' = x + 2 z
x' = 5 x - 2 y + z y' = - 2 x + 2 y + 2 z z' = x + 2 y + 5 z
THIS PAGE IS NOT A PUBLICATION OF THE GEORGIA INSTITUTE OF TECHNOLOGY AND THE GEORGIA INSTITUTE OF TECHNOLOGY HAS NOT EDITED OR EXAMINED THE CONTENT. THE AUTHOR(S) OF THE PAGE ARE SOLELY RESPONSIBLE FOR THE CONTENT.